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Families of Spaces

� Given h : Y → R we can study the sub-level sets
Y6t := h−1(−∞, t].
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Families of Spaces and Data

� To each number t ∈ R, we have a space Y6t := h−1(−∞, t]:

t

6

��

// Y6t

fs,t
��

s // Y6s

� For t 6 r 6 s, we have fs,t = fs,r ◦ fr ,t , i.e.

F : (R,6)→ Top is a functor.
� Homology in degree i with field coefficients is a functor

Hi (−; k) : Top→ Vectk

� (Sub-level set) Persistent Homology is the composition of these
functors

Si := Hi (−; k) ◦ F
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Compressed Representation

� Question: What is the smallest poset that contains all the
information of the map h?

� Morse Theory Tells Us: If the interval [t, s] contains no critical
values, then Y6t ∼= Y6s
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Compressed Representation

� Define a quotient poset q : R→ P = R / ∼ where t ∼ s iff for every
r ∈ [t, s], Y6t → Y6r is a homeomorphism, i.e. is an invertible
continuous map.

� {x 6 a 6 y } ∼= P
� F : R→ Top is actually G : P → R precomposed with q, i.e.

F = q∗G .
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Compressed Representation

� Moral: The Morse condition allowed us to work with a smaller
poset in a loss-free way.
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Motivating Level-Set Persistence

� Problem: Sub-level persistence h : Y → R depends on order of R,
which doesn’t generalize to (multi-dimensional) persistence over
R2, for example.

� Solution: Do level-set persistence!
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HOW DO WE RELATE THE FIBERS?



3 Ways to “Connect the Fibers”

(1) Closed Cells: For h : Y → R, pick a mesh
· · · < xi−1 < xi < xi+1 < · · · , then get a zigzag of spaces

· · · ← h−1(xi )→ h−1([xi , xi+1])← h−1(xi+1)→ · · ·
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3 Ways to “Connect the Fibers”

(2) Open Stars: For h : Y → R, pick a mesh
· · · < xi−1 < xi < xi+1 < · · · , then get a zigzag of spaces

· · · ← h−1((xi−1, xi ))→ h−1((xi−1, xi+1))← h−1((xi , xi+1))→ · · ·
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3 Ways to “Connect the Fibers”

(3) Actually do level-set persistence!
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Level-set Persistence

What’s the right indexing set (category)?

� For each t ∈ (x , y) we have a space Yt

� For each s ∈ (x , y) there is a neighborhood Ut of Yt that contains
Ys

Yt
� � ' // Ut

oo ? _Ys

� Allows us to define an invertible map on homology between the
fibers Ys and Yt

� But, there is only a map from Yt to Yy and from Yt to Yx .
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Level-set Persistence

The Entrance Path Category

� To the cell complex X := [x , y ] with cells x , y and a = (x , y) we
associate a pre-ordered set Entr(X ) (poset w/o anti-symmetry)

� This set has an element for every point in X , but with relations
t  s and s  t for t, s ∈ a

x too // y

� Defining an equivalence relation t ∼ s for all t, s ∈ a yields the
opposite of the face relation poset, i.e. X op:

a

�� ��
x y
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Level-set Persistence

� Approach (3) and approach (2) are actually equivalent.

� Approach (3) gives a definition for level-set persistence. Given
f : Y → X , for each i we have an assignment

F̂i : Entr(X ) ' X op → Vect t ∈ σ ⊂ X 7→ Hi (f
−1(t); k)

� Approach (3) generalizes to arbitrary dimensions and maps
f : Y → X as long as f is a proper stratified map, i.e. f : Y → X
admits a decomposition X = ∪Xσ into connected manifolds (a
stratification) where fσ : f −1(Xσ)→ Xσ is a fiber bundle.

� Stratified maps are more general than triangulable maps, e.g.

f : R2 → R2 (x , y) 7→ (x , xy)

is NOT triangulable.
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THESE ARE EXAMPLES OF











Cosheaves have a homology theory

� Can compute homology of X with coefficients in
F̂ : X op → Vect by choosing local orientations
[σ : τ] =< σ,∂τ >= {±1, 0} and setting

∂i =
∑

[σi : τi+1]rσ,τ

· · · → ⊕ F̂(faces)→ ⊕ F̂(edges)→ ⊕ F̂(vertices)→ 0

� So What?
� Every cosheaf over the real line has a barcode decomposition and

cosheaf homology gives homology of barcodes as a special case.
� By additivity, computing homology of barcodes gives cosheaf

homology over one-dimensional cell complexes X , e.g. X = [0, 1].
� Cosheaf homology well-defined in absence of barcodes.
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Borel-Moore homology HBM
∗ (−) (similar to compactly supported

cohomology) is a topological homology theory that agrees with the
homology of the barcodes.



Cosheaves on the Line

H0(X ; F̂1) = k H1(X ; F̂1) = k

H0(X ; F̂0) = k H1(X ; F̂0) = k

H0(T ) = k H1(T ) = k2 H2(T ) = k
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Cosheaves on the Line

H0(X ; F̂1) = 0 H1(X ; F̂1) = k

H0(X ; F̂0) = k H1(X ; F̂0) = 0

H0(S
2) = k H1(S

2) = 0 H2(S
2) = k

50 of 68



Cosheaves on the Line

H0(X ; F̂1) = 0 H1(X ; F̂1) = 0

H0(X ; F̂0) = k H1(X ; F̂0) = 0

H0(C ) = k H1(C ) = 0 H2(C ) = 0
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Total Homology from Level-Set Homology

Theorem (C. ’12, Dey & Burghalea ’11, Leray 1943)

Suppose
Y

f
��

X ⊂ R

is a stratified map with Y compact, then for each i consider the
barcodes Bi associated to the cosheaf F̂i , then

Hi (Y ) ∼= H0(R; F̂i )⊕ H1(R; F̂i−1) = HBM
0 (Bi )⊕ HBM

1 (Bi−1).

If X is 1D cell complex (graph or circle) then

Hi (Y ) ∼= H0(R; F̂i )⊕ H1(R; F̂i−1).
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Spectral Sequences

Theorem ( C.’12, Leray
1943)

Suppose

Y

f
��

X

is a stratified map with Y
compact and X stratified as
a cell complex, then there is
a spectral sequence
converging to H∗(Y ).

⊕ F̂i (v) ⊕ F̂i (e)oo ⊕ F̂i (σ)oo

⊕ F̂i−1(v) ⊕ F̂i−1(e)oo ⊕ F̂i−1(σ)oo

...
...

...

⊕ F̂0(v) ⊕ F̂0(e)oo ⊕ F̂0(σ)oo
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Spectral Sequences

H0(X ; F̂i ) H1(X ; F̂i ) H2(X ; F̂i ) · · ·

H0(X ; F̂i−1) H1(X ; F̂i−1) H2(X ; F̂i−1)

kk

· · ·

...
...

...

H0(X ; F̂1) H1(X ; F̂1) H2(X ; F̂1) · · ·

H0(X ; F̂0) H1(X ; F̂0) H2(X ; F̂0)

kk

· · ·
55 of 68



Total Homology?
� So What?

� Persistence is not supposed to compute total homology. It is supposed
to give statistical signals for the topology of uncertain spaces.

Theorem (C. ’13, Carlsson, de Silva & Morozov ’09, Leray 1943)

Level-Set Persistence determines Sublevel-set Persistence
By defining

Si (t) := H0((−∞, t]; F̂i )⊕ H1((−∞, t]; F̂i−1)
∼= HBM

0 (Bi ∩ (−∞, t])⊕ HBM
1 (Bi−1 ∩ (−∞, t])

we get the homology of the entire sublevel set. Using covariance we
get for t 6 s the associated maps

Si (t)→ Si (s)

as before.
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Remarks

� This is a purely (co)sheaf-theoretic treatment of Carlsson, de Silva
& Morozov’s Pyramid Theorem.

� It “generalizes” to a higher-dimensional pyramid theorem, with the
only caveat that the associated spectral sequences are harder to
compute.

� Any higher-dimensional attempt at persistence must interact with
spectral sequences.

64 of 68



Remarks

� This is a purely (co)sheaf-theoretic treatment of Carlsson, de Silva
& Morozov’s Pyramid Theorem.

� It “generalizes” to a higher-dimensional pyramid theorem, with the
only caveat that the associated spectral sequences are harder to
compute.

� Any higher-dimensional attempt at persistence must interact with
spectral sequences.

64 of 68



Remarks

� This is a purely (co)sheaf-theoretic treatment of Carlsson, de Silva
& Morozov’s Pyramid Theorem.

� It “generalizes” to a higher-dimensional pyramid theorem, with the
only caveat that the associated spectral sequences are harder to
compute.

� Any higher-dimensional attempt at persistence must interact with
spectral sequences.

64 of 68



Remarks - Interleavings

� These diagrams define functors F̂i : Open(X )→ Vect by taking
colimits of the diagram over an open set, called pre-cosheaves.

� For X a metric space, define a functor ε : Open(X )→ Open(X )
by

U  Uε := {y ∈ X |∃x ∈ U , d(x , y) 6 ε}
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Remarks - Interleavings

� Define F̂
ε
:= F̂ ◦ε for a thickened pre-cosheaf.

� Have interleavings of pre-(co)sheaves. Since Xε = X , F̂(X ) gives
an obstruction to interleavings. So a point barcode is not
interleaved with an empty barcode. An open barcode is not
interleaved with a closed one.
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Remarks - Interleavings

� To f : Y → X , the assignment

U  Hi (f
−1(U); k)

is a stable pre-cosheaf.
� The functors I described which locally agree with this one, are

stable. But, these are the homology cosheaves of the derived
pushforward, which is stable.

67 of 68



Remarks - Interleavings

� To f : Y → X , the assignment

U  Hi (f
−1(U); k)

is a stable pre-cosheaf.

� The functors I described which locally agree with this one, are
stable. But, these are the homology cosheaves of the derived
pushforward, which is stable.

67 of 68



Remarks - Interleavings

� To f : Y → X , the assignment

U  Hi (f
−1(U); k)

is a stable pre-cosheaf.
� The functors I described which locally agree with this one, are

stable. But, these are the homology cosheaves of the derived
pushforward, which is stable.67 of 68



Acknowledgements

� This work benefited from conversations with Vin de Silva, Michael
Lesnick, Bob MacPherson, and Amit Patel.

Special Thanks to the Organizers!

68 of 68




