On the geometric nature of mutual exclusion

Eric Goubault & Samuel Mimram Work in progress

CEA LIST and Ecole Polytechnique, France

ACAT Conference, Bremen

15th of July 2013

Mostly trying to wrap things up...

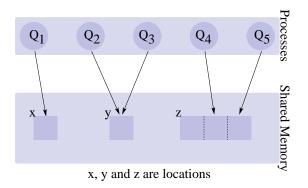
Motivation: study of concurrent systems and their schedules; talk influenced by:

- The surprising efficiency of classical mutual exclusion models in the analysis of concurrent systems
- Geometric group theory, and the ATMCS 2004 talk by R. Ghrist, work on trace spaces by M. Raussen, universal dicoverings of L. Fajstrup, our paper in GETCO 2010 etc.

IN THE PARTICULAR CASE OF MUTUAL EXCLUSION

- Corresponds exactly to the NPC cubical complexes
- CAT(0) cubical complexes are prime event structures
- Classical unfoldings of prime event structures/safe Petri nets are universal dicoverings of NPC cubical complexes
- As a potential application: "directed" H_1 in the NPC case

ORIGINAL MOTIVATION OF THIS WORK



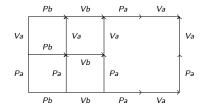
Not sequential programs, bad states, chaotic behavior

 \implies Need for synchronizations \implies Need for locks: Py, Vy (binary and counting semaphores

 \implies Interleaving semantics given by a "shuffle" of transition systems (or fibred product) - Can we "do" better?

ORIGINAL MOTIVATION OF THIS WORK

 $P_b.V_b.P_a.V_a \mid P_a.V_a$

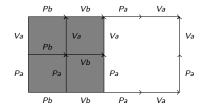


Not sequential programs, bad states, chaotic behavior \implies Need for synchronizations \implies Need for locks: Py, Vy (binary and counting semaphores \implies Interleaving semantics given by a "shuffle" of transition systems

(or fibred product) - Can we "do" better?

ORIGINAL MOTIVATION OF THIS WORK

 $P_b.V_b.P_a.V_a \mid P_a.V_a$



Not sequential programs, bad states, chaotic behavior \implies Need for synchronizations \implies Need for locks: Py, Vy (binary and counting semaphores \implies Interleaving semantics given by a "shuffle" of transition systems

(or fibred product) - Can we "do" better?

On the "geometry" side

- Cubical sets (pre-existing the field of course!)
- Po-spaces (i.e. topological space with closed partial order), introduced first in other fields (domain theory P. Johnstone etc., functionnal analysis L. Nachbin etc.) local po-spaces (atlas of po-spaces - L. Fajstrup, E. Goubault, M. Raussen)
- d-spaces (M. Grandis)
- Flows (P. Gaucher)
- Streams (S. Krishnan)
- etc.

More classical models in computer science

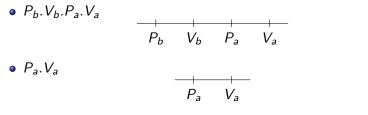
Transition systems, prime event structures, Petri nets etc.

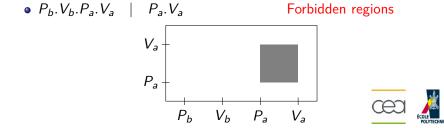
Geometric semantics

A program

$$P_b$$
; x:=1; V_b ; P_a ; y:=2; $V_a | P_a$; y:=3; V_a

will be interpreted as a directed space:



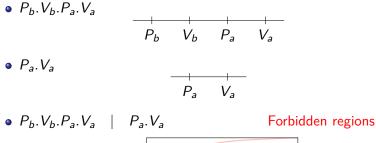


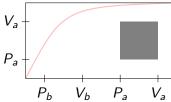
Geometric semantics

A program

$$P_b$$
; x:=1; V_b ; P_a ; y:=2; $V_a | P_a$; y:=3; V_a

will be interpreted as a directed space:





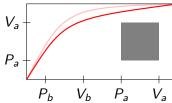
Geometric semantics

A program

$$P_b$$
; x:=1; V_b ; P_a ; y:=2; $V_a | P_a$; y:=3; V_a

will be interpreted as a directed space:





DIRECTED HOMOTOPIES

A directed homotopy (with fixed extremities) between directed paths f and $g \phi : f \to g : \overrightarrow{I} \to Y$ is a directed map $\phi : X \times \overrightarrow{I} \to Y$ such that:

• for all
$$x \in [0,1]$$
, $\phi(x,0) = f(x)$, $\phi(x,1) = g(x)$

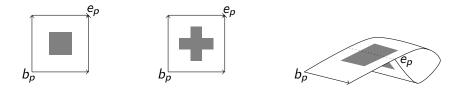
• for all
$$t \in [0,1]$$
, $\phi(0,t) = f(0)$, $\phi(1,t) = f(1)$

(in particular, for all $t \in [0,1]$, $\phi(.,t)$ is a directed path)

Schedules are directed paths up to directed homotopies. How to compute them? (fundamental category $\overrightarrow{\pi}_1(X)$, category of components, trace spaces... still quite computationally demanding!)

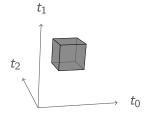
To each program p we associate a d-space (H_p, b_p, e_p) :

 $P_{a}.V_{a}|P_{a}.V_{a} = P_{a}.P_{b}.V_{b}.V_{a}|P_{b}.P_{a}.V_{a}.V_{b} = P_{a}.(V_{a}.P_{a})^{*}|P_{a}.V_{a}$



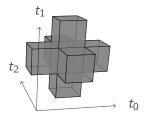
EXAMPLES OF GEOMETRIC SEMANTICS

$$P_a.V_a|P_a.V_a|P_a.V_a$$
$$(\kappa_a=2)$$



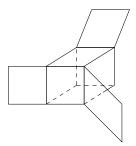
$$P_a.V_a|P_a.V_a|P_a.V_a$$

 $(\kappa_a=1)$



GEOMETRIC REALIZATION

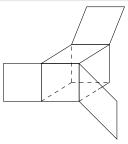
Maps pre-cubical sets to a gluing of hyper-cubes $[0, 1]^n$ along their faces (with quotient topology)



(directed path structure agreeing with partial order on each hypercube)

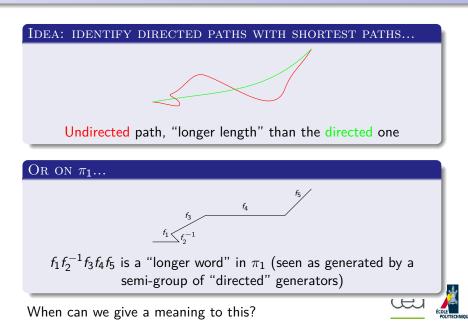
PRODUCES CUBICAL COMPLEXES

- Topological spaces X that are particular cellular complexes whose building blocks (cells) are *n*-cubes, i.e. $[0,1]^n$
- In particular we have, as data, maps c_iⁿ: [0, 1]ⁿ → X identifying the *i*th cell of dimension n in X (homeomorphism from the interior of [0, 1]ⁿ onto X plus some extra properties for the boundaries)



(directed path structure agreeing with partial order on each hypercube

Adding geodesic metric structure



Adding geodesic metric structure

d_2 and d_∞ metrics on a (arc connected) cubical complex X

Each of the cell c_iⁿ((0,1)ⁿ) inherits from the d_k (here k = 2 or ∞) metrics by:

$$d_k(x,y) = d_k\left((c_i^n)^{-1}(x), (c_i^n)^{-1}(y)\right)$$

• For any two points x, y in X,

$$d_k(x,y) = \inf_{\gamma \in \Gamma} \sum_{i=0,n_\gamma-1} d_k \left(\gamma(t_k), \gamma(t_{k+1}) \right)$$

where Γ is the set of paths from x to y and $(\gamma(t_k), \gamma(t_{k+1}))$ belongs to the same k-cell of X (hence $d_k(\gamma(t_k), \gamma(t_{k+1}))$ is well-defined)

Arc-length of a curve in a d_{∞} -space

Arc-length

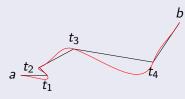
Let $c : [a, b] \rightarrow X$ a curve in X, define its arc-length as:

$$l(c) = \sup_{a=t_0 \leqslant t_1 \leqslant ... \leqslant t_n = b} \sum_{i=0}^{n-1} d(c(t_i), c(t_{i+1}))$$

(the supremum is taken over all n and all possible partitions)

Rectifiability

All paths in a finitely generated d_∞ -space have finite length.



LOCAL GEODESIC

A map $c : [a, b] \to X$ is a local geodesic is for all $t \in [a, b]$, there exists $\epsilon > 0$ such that

$$d(c(t'), c(t'')) = \mid t' - t'' \mid$$

for all $t',\ t''\in [a,b]$ with $\mid t-t'\mid +\mid t-t''\mid\leqslant\epsilon$

GEODESIC

A map $c : [0, I] \rightarrow X$ is a geodesic (from c(a) to c(b)) if

$$d(c(t),c(t')) = \mid t-t' \mid$$

for all $t, t' \in [0, I]$ (in particular I = I(c) = d(x, y)).

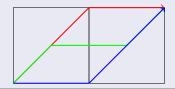
Geodesic metric space

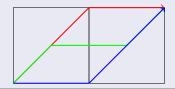
- Such metrics give connected cubical complexes the structure of a geodesic metric space, i.e. any two points can be linked by a geodesic
- (complete in case it is a finite cubical complexes Bridson & Haefliger 1999)

EXTENSION TO MORE GENERAL D-SPACES?

Open question...

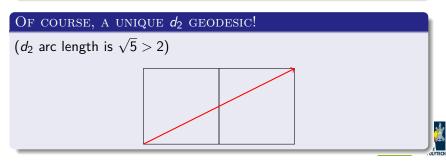
"Left-greedy" [Ghrist] - arc length 2



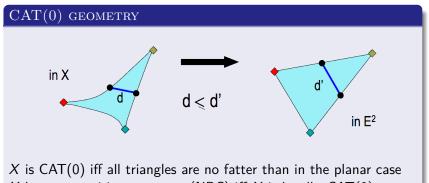


d_{∞} geodesics (start to end)

Example: 2 Unit 2-cells

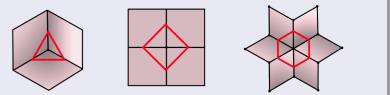


CAT(0) and NPC



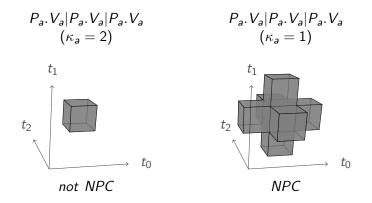
X has non-positive curvature (NPC) iff X is locally CAT(0).

GROMOV'S CONDITION

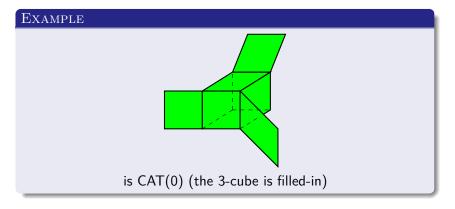


- Property: a d_∞-space is NPC iff its link at every vertex is a flag complex ("if the red edges look like a k-simplex, then there is really a k-simplex linking them")
- Implies: empty squares are OK, but not empty cubes nor empty hypercubes of dimension ≥ 3

NPC IS EXACTLY MUTUAL EXCLUSION MODELS

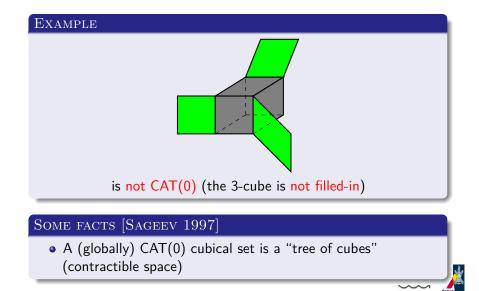


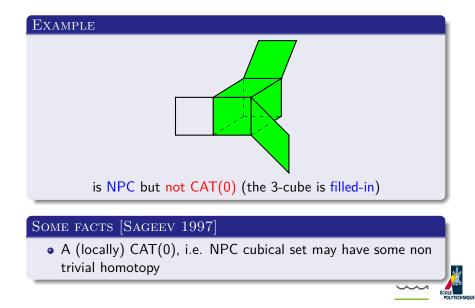
In the right-hand side case, we know that the trace space (M. Raussen) is discrete, $\overrightarrow{\pi}_1$ is "combinatorial"...can we find this with the geodesic metric approach?

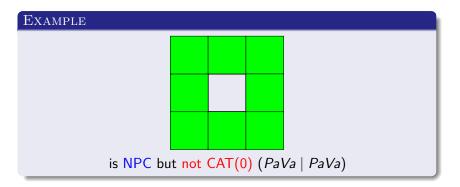


Some facts [Sageev 1997]

 A (globally) CAT(0) cubical set is a "tree of cubes" (contractible space)

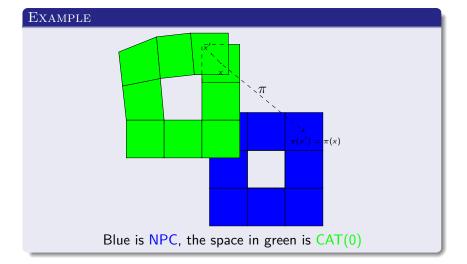






Some facts [Sageev 1997]

• A (locally) CAT(0), i.e. NPC cubical set may have some non trivial homotopy



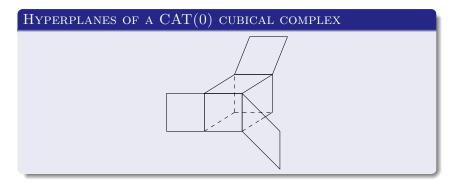
Some facts [Sageev 1997]

E. Goubault & S. Mimram

Some facts [Sageev 1997]

- The universal covering of an NPC cubical set is CAT(0)
- Any graph is NPC
- Any surface of genus g>1 (in particular, a torus) is NPC
- Products of NPC spaces are NPC (the link of the product is the join of the two links)
- (some more to be said on special cube complexes...)

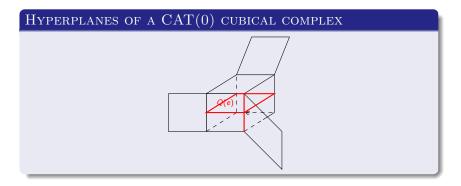
Combinatorial description of CAT(0) cubical complexes



DEFINITIONS

• Start with our usual example...

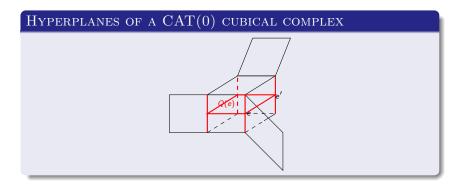
Combinatorial description of CAT(0) cubical complexes



DEFINITIONS

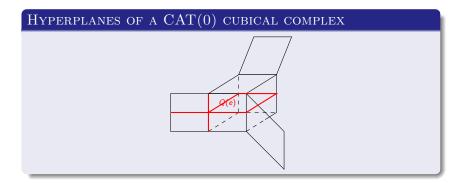
 For all n-cubes Q in X, and edges e ∈ Q, Q(e) is the (n-1)-subcube obtained by intersecting Q with the hyperplane orthogonal to e, containing the midpoint of e.

Combinatorial description of CAT(0) cubical complexes



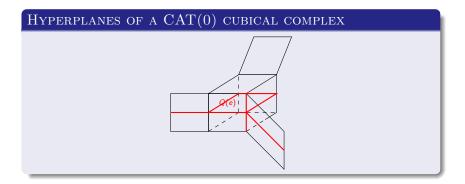
DEFINITIONS

• Two edges e, e' are equivalent if Q(e) = Q(e') - plus closure by transitivity.



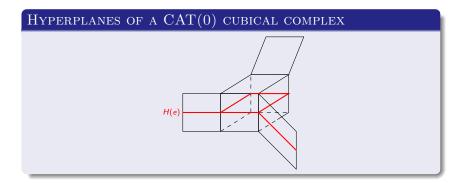
DEFINITIONS

An hyperplane is H(e) = ∪Q(e) for all equivalent edges (to e) and all cubes Q containing e (separates X in exactly two parts)



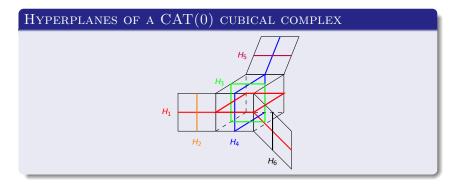
DEFINITIONS

An hyperplane is H(e) = ∪Q(e) for all equivalent edges (to e) and all cubes Q containing e (separates X in exactly two parts)



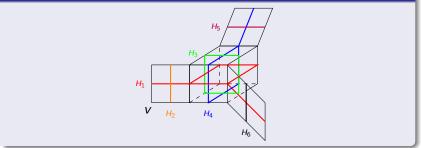
DEFINITIONS

An hyperplane is H(e) = ∪Q(e) for all equivalent edges (to e) and all cubes Q containing e (separates X in exactly two parts)



DEFINITIONS

• All 6 hyperplanes



"Recipe"

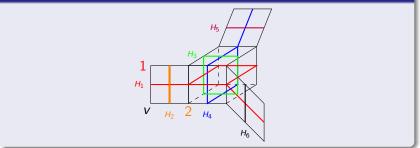
• Start with the root v - defines the negative half-spaces for each of the H_i

Combinatorics of vertices/hyperplanes [Ardila et al. 2011]



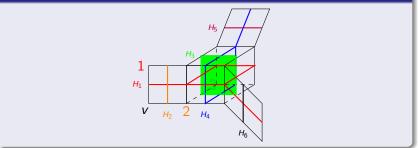
"Recipe"

Combinatorics of vertices/hyperplanes [Ardila et al. 2011]



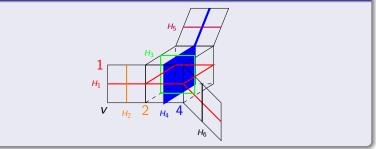
"Recipe"

Combinatorics of vertices/hyperplanes [Ardila et al. 2011]



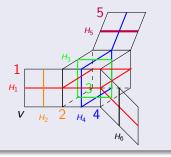
"Recipe"

Combinatorics of vertices/hyperplanes [Ardila et al. 2011]



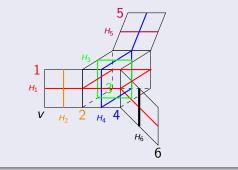
"Recipe"

Combinatorics of vertices/hyperplanes [Ardila et al. 2011]



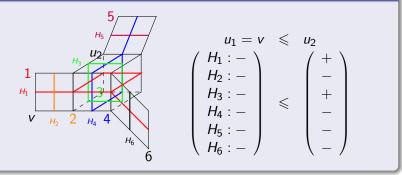
"Recipe"

Combinatorics of vertices/hyperplanes [Ardila et al. 2011]



"Recipe"

Combinatorics of vertices/hyperplanes [Ardila et al. 2011]



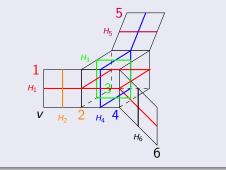
"Recipe"

Order <u>all vertices</u>: u₁ < u₂ if u₁ is in the part of the complex opposite to v with respect to hyperplanes H_j ("j-positive part") implies u₂ as well, for all j → poset L(X, v) (X is even a po-space!)

YTECHNIQUE

E. Goubault & S. Mimram

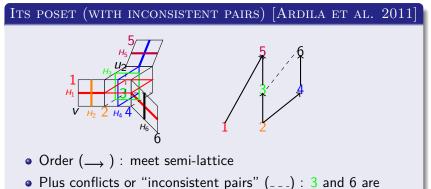
Combinatorics of vertices/hyperplanes [Ardila et al. 2011]



"RECIPE"

• This is a meet-semi lattice - the join-irreducible elements are in bijection with the hyperplanes of the cubical set!

FROM CAT(0) CUBICAL SETS TO...EVENT STRUCTURES



inconsistent since it is impossible to cross <u>once</u> both hyperplanes 6 and 3 from v

This is nothing else than a prime event structure!

BACK TO EVENT STRUCTURES FOR NPC

(PRIME) EVENT STRUCTURES

An event structure (E, \leq, \sharp) consists of a poset (E, \leq) of events, the partial order relation expressing *causal dependency*, together with a symmetric irreflexive relation \sharp called *incompatibility* satisfying

- finite causes: for every event e, the set $\{e' \mid e' \leqslant e\}$ is finite,
- hereditary incompatibility: for every events e, e' and e", e#e' and e' ≤ e" implies e#e".

Relationship Event structures/cubical sets

CONFIGURATIONS OF AN EVENT STRUCTURE

- A configuration of an event structure (E, ≤, ♯) is a finite downward closed subset of compatible events in E
- An event e is enabled at a configuration x if e ∉ x and x ⊎ {e} is a configuration.

"Adjunction" (GETCO 2010)

- 0-cells are the configurations of the event structure with the empty configuration as initial state,
- 1-cells are (x, e), x configuration, e event enabled at x
- 2-cells are the pairs (x, e₁, e₂) where x is a configuration and e₁, e₂ are both enabled at x and such that e₂ is enabled at x ⊎ {e₁} and e₁ is enabled at x ⊎ {e₂},

(similar treatment by G. Winskel with asynchronous transition systems)

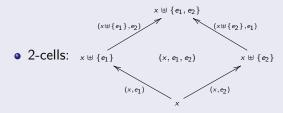
Relationship Event structures/cubical sets

CONFIGURATIONS OF AN EVENT STRUCTURE

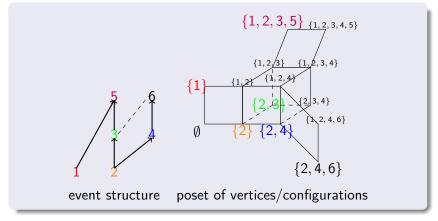
- A configuration of an event structure (E, ≤, ♯) is a finite downward closed subset of compatible events in E
- An event e is enabled at a configuration x if e ∉ x and x ⊎ {e} is a configuration.

"Adjunction" (GETCO 2010)

- 0-cells are the configurations of the event structure with the empty configuration as initial state,
- 1-cells are (x, e), x configuration, e event enabled at x



For our (rooted) CAT(0) example



(labels are given by the hyperplanes)

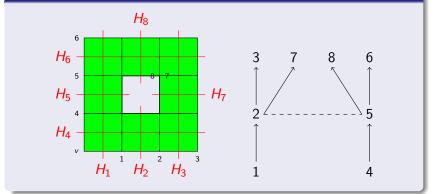
CAT(0) (rooted) cubical complexes and prime event structures

Adjunction (labelled) cubical set/event structure [Goubault/Mimram GETCO 2010]

- We have the adjunction α : PC=(pointed finite precubical sets)→(event structures)=ES (with γ right adjoint)
- It induces an adjunction α: CC=(rooted finitely generated cubical complexes)→ ES composing with a geometric realization functor and adjoint
- Result: it restricts to an isomorphism of categories between CAT(0) elements of *PC* and *ES*
- Consequence: $\gamma \circ \alpha$ maps rooted (NPC) cubical complexes X to a CAT(0) space \tilde{X}_{ν}

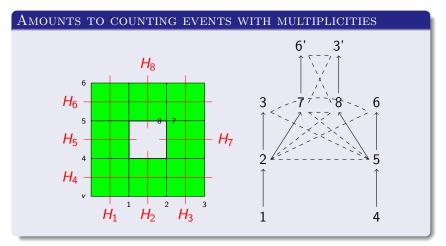
 \tilde{X}_{v} : AN EXAMPLE

Amounts to counting events with multiplicities

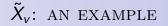


Note: 2 and 5 in conflict corresponds to dead matrix $(1 \ 1)$ in the trace space algorithm!

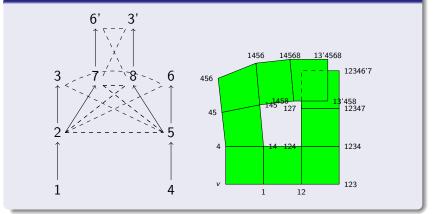


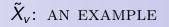


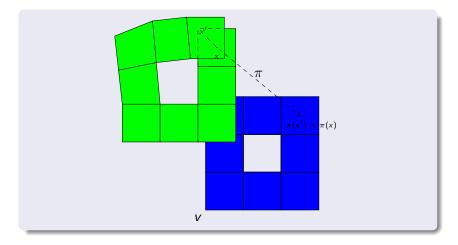
Note: create a copy of event 3 (and 6) as 3 can be reached by 2 or by 8, which are in conflict (is also the unfolding of the corresponding Petri net [current work with Tobias Heindel]!



Amounts to counting events with multiplicities







POLYTECHNIQUE

E. Goubault & S. Mimram

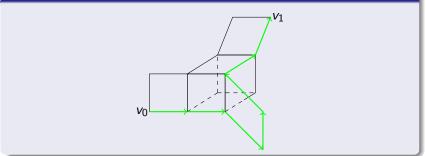
GIVEN A CUBICAL COMPLEX X

- A cube path from vertex (i.e. 0-cells) v₀ to v_n in X is a sequence of closed cubes C = {C_i}_{i=1,...,n} such that,
 - $C_i \cap C_{i+1} = v_i$ a vertex in X
 - C_i is the smallest cube of X containing v_{i-1} and v_i

The corresponding diagonal path is the piecewise linear path going through v_0, v_1, \ldots, v_n

- A cube path is normal if C_{i+1} ∩ St(C_i) = v_i where St(C_i) is the star of C_i, i.e. all cells, including C_i, which have C_i as a face. The corresponding diagonal path is call a normal diagonal path
- Normal cube paths are discrete counterparts of d_∞ -geodesics

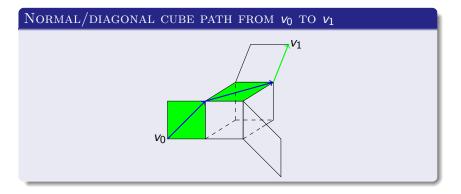
Cube path from v_0 to v_1



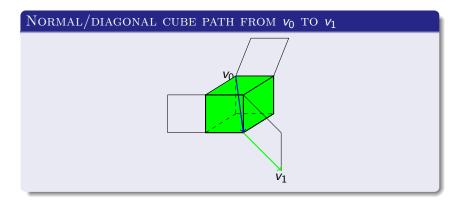
In particular, all undirected edge-paths on the 1-skeleton

E. Goubault & S. Mimram

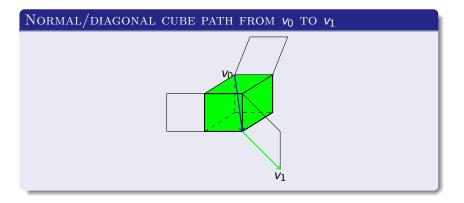
EXAMPLE



When $v_0 \leq v_1$ in L(X, v), normal diagonal cube paths are directed (they can only cross hyperplanes once! corresponds to the intuition a path that goes back in time in one coordinate cannot be a d_{∞} -geodesic)



(unlike when $v_0 \not\leq v_1$)



The argument goes through to the NPC case (going to the CAT(0) universal dicovering back and forth)

Some results [Ghrist 2004]

PARETO OPTIMALITY (ADAPTED FROM [GHRIST])

- Given a path $\gamma: [a, b] o X$, X d_∞ -space
- γ is locally Pareto optimal if it is a local d_∞ geodesics
- γ is Pareto optimal if it is a d_∞ geodesics

PARETO EQUIVALENCE

Two Pareto-optimal paths f and g are Pareto equivalent iff they are homotopic through Pareto-optimal paths which have the same d_{∞} arc-length, and the same start and end points (α and β respectively), i.e. iff there exists a continuous function $H: I \times I \to X$ such that:

- H(0,x) = f(x), H(1,x) = g(x)
- $H(t,0) = \alpha$, $H(t,1) = \beta$
- for all $t \in I$, H_t defined by $H_t(x) = H(t, x)$ is Pareto-optimal

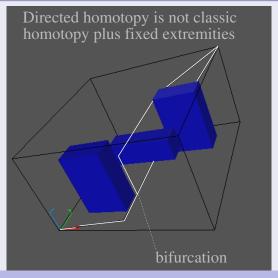
Given an NPC d_{∞} -space X

- d_{∞} -geodesics from v_0 to v_1 , $v_0 \leqslant v_1$ in L(X, v), $X d_{\infty}$ -space, are directed
- Hence Pareto-equivalence implies dihomotopy
- All paths are homotopic to a normal cube path [Ghrist 2004] in some subdivision X^N of X
- *d*∞-geodesics in *d*∞-spaces are Pareto-equivalent to normal cube paths in some subdivision *X^N* [Ghrist 2004]
- Plus some work to deform all dipaths to normal cube paths (as in Lisbeth's work)

SO IN FACT...

Dipaths modulo homotopy \equiv dipaths modulo dihomotopy in NPC $d_\infty\text{-spaces}$

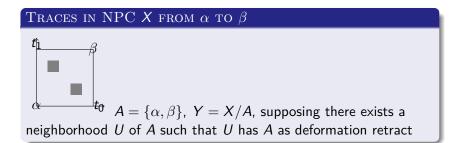
CERTAINLY NOT TRUE WITH NON-NPC CUBICAL COMPLEXES!



E. Goubault & S. Mimram

- First try (EG, 1992/PEPM 1995):
 - homologies of a certain bicomplex (horizontal=start faces in a chain complex generated by a pre-cubical set, vertical=end faces) define branchings, mergings
 - H_1 : total homology relative to endpoints, where we extract only the directed paths, gives π_1 between two endpoints in the plane, for PV models
- Since then many attempts...more or less complicated
- Of course you can consider the homology of the trace space for each pair of endpoints...

NPC cube complexes and directed π_1



STRATEGY

- Identify $\overrightarrow{\pi}_1(X)(\alpha,\beta)$ as a subset of $\pi_1(Y,\alpha)$, and even of $\pi_1(Y,\alpha)^{ab} \sim H_1(Y) \sim H_1(X) \oplus \mathbb{Z}$ of "minimal length"
- Basically, the Smith Normal form algorithm for calculating $H_1(X)$ has to be completed with Linear Programming

GENERATING $\overrightarrow{\pi}_1(X)(\alpha,\beta)$

Seen as the subset of dipaths in X generated by generators of $H_1(X)$ and p:

- Let c_1, \ldots, c_p be the generators of $H_1(X)$
- Suppose the edges in X₁ = {x₁,...,x_k} are directed, dipaths q are then identified with minimal length elements in H₁(X) ⊕ (p) with only positive coefficients in x_i:

$$q = \sum_{i=1}^{k} \lambda_i x_i$$

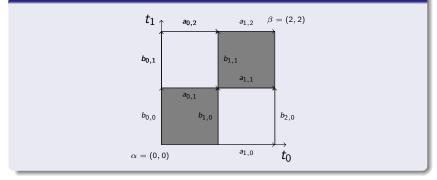
$$q = c_0 p + \sum_{i=1}^{l} \mu_j c_j [Im \ \partial_2]$$

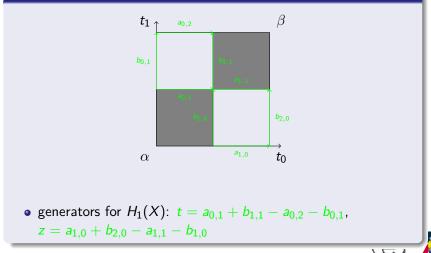
$$\lambda_i \ge 0$$

Worst-case exponential time (we may have an exponential number of dipaths mod dihomotopy, for a chain of holes)

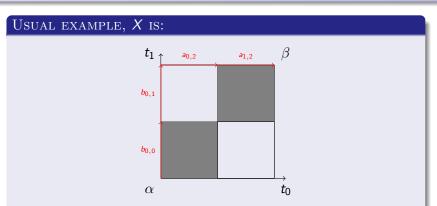
A CALCULATION

USUAL EXAMPLE, X IS:





CONSEQUENCES: HOMOLOGY



- generators for $H_1(X)$: $t = a_{0,1} + b_{1,1} a_{0,2} b_{0,1}$, $z = a_{1,0} + b_{2,0} - a_{1,1} - b_{1,0}$
- extra-generator for $H_1(X / \{\alpha, \beta\})$:

 $x = b_{0,0} + b_{0,1} + a_{0,2} + a_{1,2}$

E. Goubault & S. Mimram

FINALLY

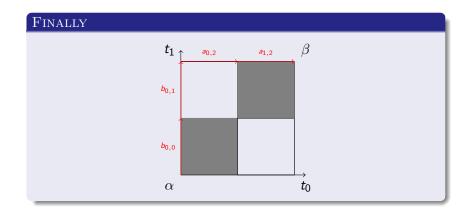
Looking at the extremal points/rays of the polyhedron given by constraints ∂A₀₀ = -a_{0,0} + a_{0,1} + b₀₀ - b₁₀ = 0, ∂A₁₁ = -a₁₁ + a₁₂ + b₁₁ - b₂₁ = 0 and μ₀x + μ₁z + μ₂t has positive coefficients λ_i in the (directed) edges, with minimal length ∑_i λ_i (=4 here!): i.e. such that:

$$\mu_1 \leqslant 0 \ \mu_2 \leqslant 0$$

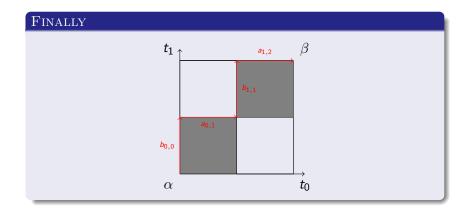
I.e. for all extremal points of the above polyhedron • We find x, x - t, and $x - t - z - A_{11} - A_{00}$

. . .

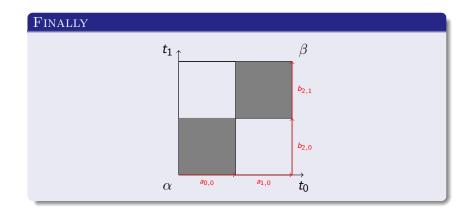
Dihomotopy classes from α to β



Dihomotopy classes from α to β



Dihomotopy classes from α to β



HOMOLOGICAL CALCULATIONS

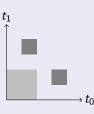
- Can that be competitive with trace space calculations in the NPC case? Using RedHom techniques?
- Higher dimensional homology and " $\overrightarrow{\pi}_n$ " in the NPC case?
- Persistent homology for varying endpoints?

GENERALIZATIONS TO THIS APPROACH

- For more general cubical complexes? (non NPC)
- Some directions: unfoldings of (unsafe) Petri nets (with Tobias Heindel), combinatorics of more general hyperplane arrangements in the dicoverings in the non NPC case (and links with the trace space algorithm)

FUTURE WORK: PERSISTENT HOMOLOGY APPROACH

- Persistent homology, i.e. with just a filtration:
 - Use of "global time" evolving on the diagonal for instance



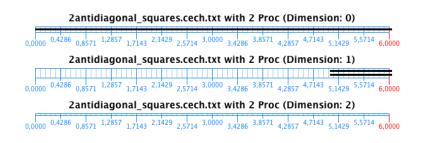
Trivial homology

Suddenly, H_1 has two generators

 $\rightarrow t_0$

t₁

- Sub-level sets as filtration
- Multidimensional persistent homology:
 - For PV programs, natural choice is the tuple of local times on each process! Exact for NPC spaces!



(some other experiments using RedHom or Javaplex to be reported soon)

THANKS FOR YOUR ATTENTION!



http://acat.lix.polytechnique.fr

