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Source: Wikipedia
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lowest contour line encircling it and no higher summit.
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Persistence diagram records for each peak its value on the vertical axis,
and the value of the saddle where it merges into a higher peak on the
horizontal axis.

prominence = persistence
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Motivation
Natural phenomena modeled as scalar functions, f : X→ R
• density of galaxies

• geometry of a material encoded in its distance function

• rate of fuel consumption during combustion encodes a flame

(Source: CCSE, CCC, SCG at LBNL.)

Topological features in scientific data:

To analyze such data, need to detect and extract salient features;
compute global statistics.

Mention clustering as a sample application.



Functions

Persistence is defined with respect to any scalar function f : X→ R.

if f is . . . persistent maxima capture significant . . .

elevation on Earth mountains
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Functions

Persistence is defined with respect to any scalar function f : X→ R.

if f is . . . persistent maxima capture significant . . .

elevation on Earth mountains

density of particles clusters

distance to a shape pockets within the shape

e.g., halos in astrophysical data

e.g., voids in a subsurface rock
formation, or in a protein

grayscale image of cells nucleii of cells
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Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets
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Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Either here or on the next slide explain the nodes and paths in the tree.
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Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Either here or on the next slide explain the nodes and paths in the tree.
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Stability Theorem (for persistence diagrams):

dB(Dgm(f),Dgm(g)) ≤ ‖f − g‖∞.
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a component of Fx+2ε.)
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Interleaving Distance
Trees Tf and Tg.

αε and βε are ε-compatible.

i2ε shift map in Tf

j2ε shift map in Tg

αε : Tf → Tg

βε : Tg → Tf

f̂ : Tf → R
ĝ : Tg → R

αε

βε

ia+2ε

(Inclusion of component Fx into
a component of Fx+2ε.)

dI(Tf ,Tg) = inf{ε | there are ε-compatible maps αε and βε}

ĝ(αε(x)) = f̂(x) + ε

βε ◦ αε = i2ε
f̂(βε(x)) = ĝ(x) + ε

αε ◦ βε = j2ε
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Examples

Shifted saddle: dI = ε.

ε

Missing branch: dI = ε/2.

ε

Shifted leaf: dI = ε.

ε



dI is a metric

1. dI(T,T) = 0;

2. dI(Tf ,Tg) = dI(Tg,Tf );

3. dI(T1,T3) ≤ dI(T1, T2) + dI(T2, T3).

Proof:

1. α0 = β0 = Id;

2. symmetry of the definition;

3. α13 = α12 ◦ α23; β13 = β12 ◦ β23.
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Stability

Stability Theorem: dI(Tf ,Tg) ≤ ‖f − g‖∞.

Fa = f−1(−∞, a]

Ga = g−1(−∞, a]

Let ε = ‖f − g‖∞.

Fa ⊆ Ga+ε ⊆ Fa+2ε.

The inclusion maps a component of Fa into a component of Ga+ε,
and vice versa. Call these maps αε and βε.

Fa

Ga+ε

Claim: αε and βε are ε-compatible.

ĝ(αε(x)) = f̂(x) + ε

βε ◦ αε = i2ε
f̂(βε(x)) = ĝ(x) + ε

αε ◦ βε = j2ε



Bottleneck vs. Interleaving Distance
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dB(Dgmf ,Dgmg) = 0 dI(Tf ,Tg) = ε > 0



Bottleneck vs. Interleaving Distance

Stability Theorem [Chazal, Cohen-Steiner, Glisse, Guibas, Oudot]:

Persistence modules: {Fa, i
b
a : Fa → Fb}, {Ga, j

b
a : Ga → Gb}.

if there are maps φa : Fa → Ga+ε and ψa : Ga → Ga+ε,
such that their compositions commute with iba and jba.

ε-interleaved:

Fa

Ga+ε Gb

Fb+εFa+2ε

(Generalizes ordinary stability theorem for persistence diagrams if
Fa = H(f−1(−∞, a]) and Ga = H(g−1(−∞, a]).)

If two persistence modules are ε-interleaved, then their persistence
diagrams are ε-close in the bottleneck distance.
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Stability Theorem [Chazal, Cohen-Steiner, Glisse, Guibas, Oudot]:

Persistence modules: {Fa, i
b
a : Fa → Fb}, {Ga, j

b
a : Ga → Gb}.

if there are maps φa : Fa → Ga+ε and ψa : Ga → Ga+ε,
such that their compositions commute with iba and jba.

ε-interleaved:

Corollary: dB(Dgm0(f),Dgm0(g)) ≤ dI(f, g).

Fa

Ga+ε Gb

Fb+εFa+2ε

(Generalizes ordinary stability theorem for persistence diagrams if
Fa = H(f−1(−∞, a]) and Ga = H(g−1(−∞, a]).)

If two persistence modules are ε-interleaved, then their persistence
diagrams are ε-close in the bottleneck distance.

αε : Tf → Tg ⇒ φa : H0(f−1(−∞, a])→ H0(g−1(−∞, a+ ε])

βε : Tg → Tf ⇒ ψa : H0(g−1(−∞, a])→ H0(f−1(−∞, a+ ε])

Proof:



Parallel Computation
of Merge Trees



Sample Queries

x

Given a point x ∈ X, find the volume of
the component of the sublevel set
f−1(−∞, a] that contains x.

• Cosmological simulations of the universe.

Detect heavy objects as persistent maxima,
but how to integrate their mass in parallel?

x

f−1(f(x))

U

Compare statistical properties to observations,
distribution of mass of heavy objects.

• Extract a component of the levelset that contains a specific point.
(E.g., when studying the consumption of hydrogen during combustion.)

• The datasets are large: 1, 0243 − 4, 0963 per timestep.
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Component volume query

x

Given a point x ∈ X, find the volume of the component of the sublevel set
f−1(−∞, a] that contains x.

• Brute-force solution is too slow when the data is distributed among
many processors;

• It makes even less sense if one is interested in a histogram of
volumes as we vary the sublevelset thresholds.

(e.g., determine the
volume of a cluster)



Merge Trees: Construction
Function: f : K → R
K is a triangulation;
f is defined on the vertices and piecewise-linearly interpolated.
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Merge Trees: Construction
Function: f : K → R
K is a triangulation;

Merge tree construction:

sort vertices of K by f
for each vertex v in sorted order do

add v
for each edge uv with f(u) ≤ f(v) do

if Find(u) 6= Find(v) then
set v as the parent of u in T
Union(u, v)

f is defined on the vertices and piecewise-linearly interpolated.

f

(variation of Kruskal’s algorithm):



Merge Trees: Construction
Function: f : K → R
K is a triangulation;

Merge tree construction:

sort vertices of K by f
for each vertex v in sorted order do

add v
for each edge uv with f(u) ≤ f(v) do

if Find(u) 6= Find(v) then
set v as the parent of u in T
Union(u, v)

f is defined on the vertices and piecewise-linearly interpolated.

• Best known deterministic algorithm for MST: O(mα(m,n)) [Chazelle ’00]

Connection to MST?
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n = |vertices|
m = |edges|

• Lower-bound for merge trees: Ω(n log n).

(variation of Kruskal’s algorithm):



Existing Parallel Approach [Pascucci, Cole-McLaughlin ’03]

Merge(T(U), T(V )) → T(U ∪ V )

Problem: Given merge trees for f|U and f|V , find merge tree for f|U∪V .

repeat the union-find contruction with
the two trees as the input.

• Hierarchically partition the domain
(e.g., a quad- or oct-tree for regular grids).

• On each processor Pi, compute the merge tree
TUi

of the function restricted to the set Ui.

• Merge trees in pairs, until we get the full merge tree.
(In other words, perform a binary reduction.)

Problem: The reduction is top-heavy. At the end,
a single processor has to assemble the entire merge tree.
The procedure does not scale.

To merge two trees:
take their union and compute its merge tree.

U V

U V

U ∩ V

x1

x1

x2

x2x3

x3

x1

x2

x3

T(U) T(V )



Solution I: Global Simplified
Data is always corrupted by noise.
Typical analysis pipeline: compute a descriptor; simplify the descriptor;
use the simplified descriptor for analysis.

For merge trees, simplification means pruning short banches.
Given ε > 0, remove subtrees of depth less than ε.
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Interpretation:
Given f : X→ R, there is g : X→ R, with ‖f − g‖∞ ≤ ε, such that g
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Birth

D
ea

th

ε



Solution I: Global Simplified
Data is always corrupted by noise.
Typical analysis pipeline: compute a descriptor; simplify the descriptor;
use the simplified descriptor for analysis.

For merge trees, simplification means pruning short banches.
Given ε > 0, remove subtrees of depth less than ε.

Interpretation:
Given f : X→ R, there is g : X→ R, with ‖f − g‖∞ ≤ ε, such that g
has the fewest extrema. Compute the merge tree of g, rather than f .
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ε

compute the simplified tree directly
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Interleaved Computation

⇒ simplification and merging can be interleaved

Theorem:
Let TU and TU∪V be the merge trees of the function restricted to U
and U ∪ V . If every node in a subtree of TU lies outside U ∩ V , then
the subtree appears in TU∪V .

once a subtree lies in the interior of a region,
it does not change in the merging process.

low persistence + interior nodes only
⇒ simplify away

Theorem:
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Theorem:
Let TU and TU∪V be the merge trees of the function restricted to U
and U ∪ V . If every node in a subtree of TU lies outside U ∩ V , then
the subtree appears in TU∪V .

once a subtree lies in the interior of a region,
it does not change in the merging process.

low persistence + interior nodes only
⇒ simplify away

Theorem:



All the experiments performed at the National Energy Research
Scientific Computing Center (NERSC) on a Cray XE6 with
24-core AMD 2.1GHz processors per node, sharing 32GB memory.

Timings

A2 (20483): astrophysics simulation
C (10242 × 2048): combustion simulation
A1 (10243): astrophysics simulation
V (5123): rotational angiography scan
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Solution II: Local–Global Representation
Limitations of the global simplified scheme:

• have to pick the simplification threshold ε in advance (chicken-and-egg);

• one monolithic tree in the end (difficult to process).

Goal: distribute the tree representation.

• Many ways to do this, e.g., could store for every local vertex its
parent in the global tree. (Terrible for analysis.)

• Focus on analysis: distribute the tree to minimize communication
when post-processing.

Each processor records how its local vertices fit
into the global tree.

(Each branch is a connected component,
so we record for every local vertex what
global components it belongs to for all
function values.)
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Vertex colors represent domain regions.
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Analysis

Example query: compute the volumes of the sublevel set components
that contain point x.

m1

x

s1

...

m2

s2

s3

m3

On the processor responsible for U 3 x:

• Identify the sequence of minima and
saddles m1, s1,m2, s2,m3, s3, . . .

• broadcast this sequence to the rest
of the processors

• each processor can independently
identify its contribution to each one
of these sublevel set components



Sparse Exchange

U = initial local domain

B = current global domain

r = MPI rank

T ← MergeTree(f|U )
Until B is the full domain:

At each iteration:
send T(∂B)
receive T′(∂B′)
merge T and T′(∂B′)
sparsify → T(U ∪ ∂B)

1: 2:

4:3:

sparsification and merging can be interleaved

Each processor maintains the tree
sparsified with respect to its local
domain, and the boundary of its
current global domain.

Once a subtree consists only of
interior nodes, and its not reachable
from local or boundary vertices, we
can remove it.
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Timings

A2 (20483): astrophysics simulation
C (10242 × 2048): combustion simulation
A1 (10243): astrophysics simulation
V (5123): rotational angiography scan

A2C

V A1

Almost as fast to compute as the most
aggressive simplification, but doesn’t
lose information.

(using 512 processors)



Tree growth

Largest tree size during each iteration on any processor.

Input: 1, 0243 grid of particle density (astrophysics data).

(using 512 processors)



Tree growth

Largest tree size during each iteration on any processor.

Input: 1, 0243 grid of particle density (astrophysics data).

End result: full merge tree (no information loss), but each processor has
to store only a small representation.

(using 512 processors)
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Final tree sizes as we increase the
number of processors (these serve
as the input to the analysis
routines):



Results

Number of processors

N
o

d
es

S
ec

o
n

d
s

Number of processors

Final tree sizes as we increase the
number of processors (these serve
as the input to the analysis
routines):

Times to compute this
representation:



Analysis routine: levelset component extraction

Problem:
User chooses a point x,
extract component of
f−1(f(x)) that contains x.
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Analysis routine: levelset component extraction

Problem:
User chooses a point x,
extract component of
f−1(f(x)) that contains x.

VisIt (state of the art visualization software)

extracts the components and then labels
them.

x

f−1(f(x))

U

Input: 5123 grids, medical images



Contour Trees
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Distance function to {A,B,C}. Contour tree of the function.

Two points are equivalent, x ∼ y, if f(x) = f(y) and they belong to the same
component of the levelset f−1(f(x)).

f : X→ R

Reeb graph = quotient space X/∼ = continuously contract contours to points

If X is simply connected, Reeb graph is called a contour tree.

[Carr, Snoeyink, Axen ’03]:
compute contour tree from merge trees of f and −f in linear time.

Merge trees of f and −f contain the information that we want.



Contours

To extract the full contour, intersect
every maximal simplex with the levelset. f−1(a)

But we want to only report the
component that contains x.

Problem: Given a point x, extract component of f−1(f(x)) that contains x.



Contours

To extract the full contour, intersect
every maximal simplex with the levelset. f−1(a)

But we want to only report the
component that contains x.

Problem: Given a point x, extract component of f−1(f(x)) that contains x.

Idea: Local–global represenation determines a globally unique component ID
without any communication. On simply connected domains, sub- and super-level
sets components intersect in at most one component.



Contours

To extract the full contour, intersect
every maximal simplex with the levelset. f−1(a)

But we want to only report the
component that contains x.

Algorithm:

• Processor responsible for x, identifies the minimum and the maximum
of the sub- and super-levelset components that contain x.

Problem: Given a point x, extract component of f−1(f(x)) that contains x.

• Each processor Pj identifies the sub- and
super-levelset components containing x.

• Report only those simplices σ that
have a vertex in each component.

x x

Idea: Local–global represenation determines a globally unique component ID
without any communication. On simply connected domains, sub- and super-level
sets components intersect in at most one component.



Analysis routine: levelset component extraction

Problem:
User chooses a point x,
extract component of
f−1(f(x)) that contains x.

Result:
Input: 5123 grids, medical images
Using local–global representation

x

f−1(f(x))

U

(With local–global representation, for
each processor to find its contribution
to the component, it’s sufficient to
broadcast just two vertices.)

With local–global representation, this problem can be solved without communication:
each processor finds its contribution to the component; sufficient to broadcast just two vertices.



Analysis routine: levelset component extraction

Problem:
User chooses a point x,
extract component of
f−1(f(x)) that contains x.

Result:
Input: 5123 grids, medical images
Using local–global representation

vs. VisIt (state of the art)

x

f−1(f(x))

U

(With local–global representation, for
each processor to find its contribution
to the component, it’s sufficient to
broadcast just two vertices.)

With local–global representation, this problem can be solved without communication:
each processor finds its contribution to the component; sufficient to broadcast just two vertices.



Variations
• Component labeling: instead of extracting a specific component, extract the

full levelset, and label its components. We can do so without communication.

• Interlevel set: extract a branch or a path (x, y) in the contour tree.
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• Contour tracking: match contours of f−1(s) with those of f−1(t).
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for each x ∈ U ∩ V do
zip(πU (x), πV (x))

path from x to the root
in the tree for f|U

πU (x) =

merge paths in
the sorted order
(recall Merge-Sort)

zip =

x1

x2

x3

x1

x2

x3

Shared-memory merging
• The basic operation in all three algorithm is the merging of two trees; this is

done by repeating the union–find algorithm on the union of the two trees.

• We would like to take advantage of multiple shared-memory cores, but this
procedure requires the vertices to be processed in the order of the function
value.

• There is an alternative algorithm [Bremer et al.] that merges in sorted order
the paths in the two trees that start from the shared vertices.
(Unfortunately, this algorithm is much slower in the serial case than union-find.)
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for each x ∈ U ∩ V do
zip(πU (x), πV (x))

path from x to the root
in the tree for f|U

πU (x) =

merge paths in
the sorted order
(recall Merge-Sort)

zip =

x1 x1

Shared-memory merging
• The basic operation in all three algorithm is the merging of two trees; this is

done by repeating the union–find algorithm on the union of the two trees.

• We would like to take advantage of multiple shared-memory cores, but this
procedure requires the vertices to be processed in the order of the function
value.

• There is an alternative algorithm [Bremer et al.] that merges in sorted order
the paths in the two trees that start from the shared vertices.
(Unfortunately, this algorithm is much slower in the serial case than union-find.)
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for each x ∈ U ∩ V do
zip(πU (x), πV (x))

path from x to the root
in the tree for f|U

πU (x) =

merge paths in
the sorted order
(recall Merge-Sort)

zip =

x2 x2

Shared-memory merging
• The basic operation in all three algorithm is the merging of two trees; this is

done by repeating the union–find algorithm on the union of the two trees.

• We would like to take advantage of multiple shared-memory cores, but this
procedure requires the vertices to be processed in the order of the function
value.

• There is an alternative algorithm [Bremer et al.] that merges in sorted order
the paths in the two trees that start from the shared vertices.
(Unfortunately, this algorithm is much slower in the serial case than union-find.)
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for each x ∈ U ∩ V do
zip(πU (x), πV (x))

path from x to the root
in the tree for f|U

πU (x) =

merge paths in
the sorted order
(recall Merge-Sort)

zip =

x3
x3

Shared-memory merging
• The basic operation in all three algorithm is the merging of two trees; this is

done by repeating the union–find algorithm on the union of the two trees.

• We would like to take advantage of multiple shared-memory cores, but this
procedure requires the vertices to be processed in the order of the function
value.

• There is an alternative algorithm [Bremer et al.] that merges in sorted order
the paths in the two trees that start from the shared vertices.
(Unfortunately, this algorithm is much slower in the serial case than union-find.)
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for each x ∈ U ∩ V do
zip(πU (x), πV (x))

path from x to the root
in the tree for f|U

πU (x) =

merge paths in
the sorted order
(recall Merge-Sort)

zip =

x1

x2

x3

x1

x2

x3

Shared-memory merging
• The basic operation in all three algorithm is the merging of two trees; this is

done by repeating the union–find algorithm on the union of the two trees.

• We would like to take advantage of multiple shared-memory cores, but this
procedure requires the vertices to be processed in the order of the function
value.

• There is an alternative algorithm [Bremer et al.] that merges in sorted order
the paths in the two trees that start from the shared vertices.
(Unfortunately, this algorithm is much slower in the serial case than union-find.)
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Shared-memory merging
• The problem is that some vertices get traversed many more times than is

necessary. (Merging n linked lists of size 1 each can take between n logn
and n2 depending on the chosen order. We don’t control the order.)

• Instead we turn to skip-lists (and build skip-trees):

• Each parent pointer becomes a stack of randomized
height;

• Each path to the root is a skip-list;

• When merging two skip-lists, we can use additional
levels to skip over many nodes.
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levels to skip over many nodes.

(Merging two trees with 800,000 nodes each.)



Shared-memory merging
• The problem is that some vertices get traversed many more times than is

necessary. (Merging n linked lists of size 1 each can take between n logn
and n2 depending on the chosen order. We don’t control the order.)

• Instead we turn to skip-lists (and build skip-trees):

• Each parent pointer becomes a stack of randomized
height;

• Each path to the root is a skip-list;

• When merging two skip-lists, we can use additional
levels to skip over many nodes.

(Merging two trees with 800,000 nodes each.)



Summary

• Two new ways to compute merge trees in parallel:

– Global simplified: take advantage of the problem structure to
prune noise;

– Local–global: distribute the tree to facilitate analysis.

(Can construct a tree on billions of points. Tried up to 4, 0963.)

• A new way to merge two trees in parallel in shared memory.

• The shift of emphasis from parallel computation of the descriptor to
its distributed representation that facilitates subsequent analysis is
likely to benefit other topological constructions (Reeb graphs,
Morse–Smale complexes, etc.).

• Interleaving distance between merge trees.
Major question: can we compute it efficiently?
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