A bridge between continuous and discrete multiD persistence

N. Cavazza¹, M. Ethier², P. Frosini¹, T. Kaczynski², <u>Claudia Landi³</u>

¹ Università di Bologna
 ² Université de Sherbrooke
 ³ Università di Modena e Reggio Emilia

Applied and Computational Algebraic Topology Bremen, July 15-19, 2013

Motivation

- How accurately does rank invariant comparison on discrete models approximate that on continuous objects?
- To which extent can data resolution be coarsened in order to maintain a certain error threshold on rank invariants comparison?

Outline

- Multidimensional persistence of a filtration
 - sub-level set filtrations
 - simplicial complex filtrations
- From discrete to continuous filtrations:
 - an obstacle: topological aliasing
 - a way round: axis-wise linear interpolation
- From continuous to discrete:
 - $\circ\,$ stable comparison of multi-D persistence
- Application:
 - a procedure to predetermine the model precision required to reach a given error threshold.

1-D vs. multi-D Persistence

1-D persistence captures the topology of a one-parameter filtration.

1-D vs. multi-D Persistence

Multi-D persistence captures the topology of a family of spaces filtered along multiple geometric dimensions.

.darkness 00 00 $^{\circ}X_{3,2}$ • X_{3.1} X٦ 00 00 $^{\bullet}X_{2,2}$ $X_{2.1}$ $X_{1.1}$ $X_{1,2}$ $\bar{X}_{1,4}$ mass

Filtrations

• Sublevelset filtrations: Any continuous function $f = (f_1, ..., f_k) : X \to \mathbb{R}^k$ induces sub-level sets:

$$X_{\alpha} = \bigcap_{i=1}^{k} f_i^{-1}((-\infty, \alpha_i]), \quad \alpha = (\alpha_1, \dots, \alpha_k) \in \mathbb{R}^k.$$

Setting

$$lpha = (lpha_i) \preceq eta = (eta_i)$$
 iff $lpha_i \leq eta_i$ for every i

we get a k-parameter filtration of X by sub-level sets:

$$\alpha \preceq \beta$$
 implies $X_{\alpha} \subseteq X_{\beta}$.

• Discrete filtrations: Given a simplicial complex \mathscr{K} and a function $\varphi : \mathscr{V}(K) \to \mathbb{R}^k$, for any $\alpha \in \mathbb{R}^k$ let

$$\mathscr{K}_{\alpha} = \{ \sigma \in \mathscr{K} | \varphi(v) \preceq \alpha \text{ for all vertices } v \leq \sigma \}.$$

5 of 15

Continuous vs discrete setting

• Sub-level set filtrations are those for which stability results hold: $\forall f, f': X \to \mathbb{R}^k$ continuous functions, $D(\rho_f, \rho_{f'}) \le ||f - f'||_{\infty}$.

Continuous vs discrete setting

- Sub-level set filtrations are those for which stability results hold: $\forall f, f': X \to \mathbb{R}^k$ continuous functions, $D(\rho_f, \rho_{f'}) \le ||f - f'||_{\infty}$.
- Discrete filtrations are those actually used in computations:

Stable comparison of rank invariants obtained from discrete data?

From discrete to continuous filtrations

Question: How to extend $\varphi : \mathscr{V}(K) \to \mathbb{R}^k$ to a continuous function $K \to \mathbb{R}^k$ so that its sub-level set filtration coincides with $\{K_{\alpha}\}_{\alpha \in \mathbb{R}^k}$?

From discrete to continuous filtrations

Question: How to extend $\varphi : \mathscr{V}(K) \to \mathbb{R}^k$ to a continuous function $K \to \mathbb{R}^k$ so that its sub-level set filtration coincides with $\{K_{\alpha}\}_{\alpha \in \mathbb{R}^k}$? **Answer:** 1-D persistence: use linear interpolation [Morozov, 2008]

From discrete to continuous filtrations

Question: How to extend $\varphi : \mathscr{V}(K) \to \mathbb{R}^k$ to a continuous function $K \to \mathbb{R}^k$ so that its sub-level set filtration coincides with $\{K_{\alpha}\}_{\alpha \in \mathbb{R}^k}$? **Answer:** Multi-D persistence:

linear interpolation yields topological aliasing

Topological Aliasing: numerical experiments

	Original	Linear int.	% Diff					
	cat0 vs. cat0-tran1-1							
H_1	0.046150	0.040576	-13.737185					
H_0	0.225394	0.207266	-8.746249					
	cat0-tran1-2 vs. cat0-tran2-1							
H_1	0.034314	0.029188	-17.562012					
H ₀	0.208451	0.204511	-1.926547					
	cat0-tran2-1 vs. cat0-tran2-2							
H_1	0.045545	0.037061	-22.891989					
H_0	0.212733	0.208097	-2.227807					

9 of 15

- Given any $\sigma \in \mathscr{K}$, set $\mu(\sigma) = max\{\varphi(v) | v \text{ is a vertex of } \sigma\}$.
- Use induction to define $\varphi^{\neg} : \mathcal{K} \to \mathbb{R}^k$ on σ and a point $w_{\sigma} \in \sigma$ s.t.
 - For all $x \in \sigma$, $\varphi^{\neg}(x) \preceq \varphi^{\neg}(w_{\sigma}) = \mu(\sigma)$;
 - $\circ \ arphi^{
 eg}$ is linear on any line segment $[w_{\sigma},y]$ with $y\in\partial\sigma$.

- Given any $\sigma \in \mathscr{K}$, set $\mu(\sigma) = max\{\varphi(v) | v \text{ is a vertex of } \sigma\}$.
- Use induction to define φ[¬]: K → ℝ^k on σ and a point w_σ ∈ σ s.t.
 For all x ∈ σ, φ[¬](x) ≤ φ[¬](w_σ) = μ(σ);
 - $\circ \ arphi^{\neg}$ is linear on any line segment $[w_{\sigma},y]$ with $y\in\partial\sigma$.

- Given any $\sigma \in \mathscr{K}$, set $\mu(\sigma) = max\{\varphi(v) | v \text{ is a vertex of } \sigma\}$.
- Use induction to define φ[¬]: K → ℝ^k on σ and a point w_σ ∈ σ s.t.
 For all x ∈ σ, φ[¬](x) ≤ φ[¬](w_σ) = μ(σ);
 - $\circ \ arphi^{
 eg}$ is linear on any line segment $[w_{\sigma},y]$ with $y\in\partial\sigma$.

- Given any $\sigma \in \mathscr{K}$, set $\mu(\sigma) = max\{\varphi(v) | v \text{ is a vertex of } \sigma\}$.
- Use induction to define φ[¬]: K → ℝ^k on σ and a point w_σ ∈ σ s.t.
 For all x ∈ σ, φ[¬](x) ≤ φ[¬](w_σ) = μ(σ);
 - $\circ \ arphi^{
 eg}$ is linear on any line segment $[w_{\sigma},y]$ with $y\in\partial\sigma$.

Theorem For any $\alpha \in \mathbb{R}^k$, K_{α} is a strong deformation retract of $K_{\phi^{\neg} \preceq \alpha}$.

10 of 15

Bridging stability from continuous to discrete persistence

- X and Y homeomorphic triangulable spaces (real objects);
- f: X → ℝ^k,g: Y → ℝ^k continuous functions (real measurements);
- *K*' and *L*' simplicial complexes with |*K*'| = K, |*K*'| = L (approximated object);
- $\tilde{\varphi}: \mathcal{K} \to \mathbb{R}^k$, $\tilde{\psi}: L \to \mathbb{R}^k$ continuous functions (approximated measurements);

Theorem: If two homeomorphisms $\xi : K \to X$, $\zeta : L \to Y$ exist s.t.

$$\|\tilde{\varphi} - f \circ \xi\|_{\infty} \leq \varepsilon/4, \ \|\tilde{\psi} - g \circ \zeta\|_{\infty} \leq \varepsilon/4$$

then, for any sufficiently fine subdivision ${\mathscr K}$ of ${\mathscr K}'$ and ${\mathscr L}$ of ${\mathscr L}',$

$$|\mathrm{D}(\rho_f,\rho_g)-\mathrm{D}(\rho_{\varphi},\rho_{\psi})|\leq \varepsilon,$$

 $\varphi_{_{11 \text{ of } 15}}(\mathscr{K}) \to \mathbb{R}^k, \ \psi : \mathscr{V}(\mathscr{L}) \to \mathbb{R}^k$ being restrictions of $\tilde{\varphi}$ and $\tilde{\psi}$.

• $\exists \delta > 0 \text{ s.t. } \max\{ \operatorname{diam} \sigma \mid \sigma \in \mathscr{K} \text{ or } \sigma \in \mathscr{L} \} < \delta \implies$

$$|\mathrm{D}(
ho_{\widetilde{arphi}},
ho_{\widetilde{\psi}}) - \mathrm{D}(
ho_{arphi^{
ho}},
ho_{\psi^{
ho}})| < arepsilon/2.$$

• $\exists \delta > 0 \text{ s.t. } \max\{\operatorname{diam} \sigma \mid \sigma \in \mathscr{K} \text{ or } \sigma \in \mathscr{L}\} < \delta \implies$

$$|\mathrm{D}(
ho_{\widetilde{arphi}},
ho_{\widetilde{\psi}})-\mathrm{D}(
ho_{arphi^{
ho}},
ho_{\psi^{
ho}})|$$

•
$$ho_{arphi}=
ho_{arphi^{\neg}},\
ho_{arphi}=
ho_{arphi^{\neg}}.$$

• $\exists \delta > 0 \text{ s.t. } \max\{ \operatorname{diam} \sigma \mid \sigma \in \mathscr{K} \text{ or } \sigma \in \mathscr{L} \} < \delta \implies$

$$|\mathrm{D}\left(
ho_{ ilde{arphi}},
ho_{ ilde{\psi}}
ight)-\mathrm{D}\left(
ho_{arphi^{
eg}},
ho_{\psi^{
eg}}
ight)|$$

•
$$\rho_{\varphi} = \rho_{\varphi^{\neg}}, \ \rho_{\psi} = \rho_{\psi^{\neg}}.$$

• max{diam $\sigma \mid \sigma \in \mathscr{K} \text{ or } \sigma \in \mathscr{L}$ } $< \delta \implies$

$$|\mathrm{D}(\rho_{\widetilde{\varphi}},\rho_{\widetilde{\psi}})-\mathrm{D}(\rho_{\varphi},\rho_{\psi})|<\varepsilon/2.$$

• $\exists \delta > 0 \text{ s.t. } \max\{ \operatorname{diam} \sigma \mid \sigma \in \mathscr{K} \text{ or } \sigma \in \mathscr{L} \} < \delta \Longrightarrow$

$$|\mathrm{D}\left(
ho_{ ilde{arphi}},
ho_{ ilde{\psi}}
ight)-\mathrm{D}\left(
ho_{arphi^{
eg}},
ho_{\psi^{
eg}}
ight)|$$

•
$$\rho_{\varphi} = \rho_{\varphi^{\neg}}, \ \rho_{\psi} = \rho_{\psi^{\neg}}.$$

• max{diam $\sigma \mid \sigma \in \mathscr{K} \text{ or } \sigma \in \mathscr{L}$ } $< \delta \implies$

$$|\mathrm{D}(
ho_{ ilde{arphi}},
ho_{ ilde{\psi}})-\mathrm{D}(
ho_{arphi},
ho_{\psi})|$$

 $\begin{array}{lll} \mathrm{D}(\rho_{f},\rho_{g}) & \leq & \mathrm{D}(\rho_{f},\rho_{f\circ\xi}) + \mathrm{D}(\rho_{f\circ\xi},\rho_{\tilde{\varphi}}) + \mathrm{D}(\rho_{\tilde{\varphi}},\rho_{\tilde{\psi}}) \\ & + & \mathrm{D}(\rho_{\tilde{\psi}},\rho_{g\circ\zeta}) + \mathrm{D}(\rho_{g\circ\zeta},\rho_{g}) \end{array}$

• Aim: Calculate the model precision required to reach a given error threshold

- Aim: Calculate the model precision required to reach a given error threshold
- Method: demonstrated using the following example

- Aim: Calculate the model precision required to reach a given error threshold
- Method: demonstrated using the following example

For a dataset of 5000 functions $f_i : T \to \mathbb{R}^2$ on the torus T, given a set of triangulations of T with 2^{2N} simplices (varying N) we obtain the function $\varphi_{i,N}$ by sampling f_i at the vertices of the triangulations.

- Aim: Calculate the model precision required to reach a given error threshold
- Method: demonstrated using the following example

For a dataset of 5000 functions $f_i : T \to \mathbb{R}^2$ on the torus T, given a set of triangulations of T with 2^{2N} simplices (varying N) we obtain the function $\varphi_{i,N}$ by sampling f_i at the vertices of the triangulations. We can estimate the error caused by coarsening the model by

computing $\|\varphi_{i,N} - f_i\|_{\infty}$:

Ν	4	5	6	7	8	9
μ	0.3841	0.2995	0.1785	0.0977	0.0503	0.0254
σ	0.060	0.0541	0.0335	0.0179	0.0092	0.0046
$\mu + \sigma$	0.4444	0.3536	0.2120	0.1157	0.0596	0.0300

13 of 15

By the Stability Theorem we get a bound of the error on the rank invariants caused by model coarsening

Conclusions

We have shown that in multidimensional persistence:

- Passing from discrete to continuous setting, a peculiar phenomenon occurs: topological aliasing
- Topological aliasing is removed by using axis-wise linear interpolation
- Stability of rank invariants passes from continuous to discrete filtrations
- Stability for discrete filtrations yields a method for bounding the error caused by model coarsening

THANK YOU FOR YOUR ATTENTION!