Random Latin Squares and 2-dimensional Expanders

Roy Meshulam Technion – Israel Institute of Technology

joint work with Alex Lubotzky

Applied and Computational Algebraic Topology Bremen, July 2013

・ロト・日本・モート モー うへぐ

Plan

Expansion in Graphs and Complexes

- Expander Graphs
- Cohomological Expansion of Complexes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Topological Overlap Property

Plan

Expansion in Graphs and Complexes

- Expander Graphs
- Cohomological Expansion of Complexes
- The Topological Overlap Property

Latin Square Complexes

- A Model for Random 2-Complexes
- Spectral Gaps and 2-Expansion
- Large Deviations for Latin Squares
- Random LS-Complexes are 2-Expanders
- Related Questions and Open Problems

The Graphical Cheeger Constant

Edge Cuts For a graph G = (V, E) and $S \subset V$, $\overline{S} = V - S$ let $e(S, \overline{S}) = |\{e \in E : |e \cap S| = 1\}|.$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The Graphical Cheeger Constant

Edge Cuts For a graph G = (V, E) and $S \subset V$, $\overline{S} = V - S$ let $e(S, \overline{S}) = |\{e \in E : |e \cap S| = 1\}|.$

Cheeger Constant

$$h(G) = \min_{0 < |S| \le \frac{|V|}{2}} \frac{e(S,\overline{S})}{|S|}.$$

(d, ϵ) -Expanders

A family of graphs $\{G_n = (V_n, E_n)\}_n$ with $|V_n| \to \infty$ with two seemingly contradicting properties:

- High Connectivity: $h(G_n) \ge \epsilon$.
- Sparsity: $\max_{v} \deg_{G_n}(v) \leq d$.

(d, ϵ) -Expanders

A family of graphs $\{G_n = (V_n, E_n)\}_n$ with $|V_n| \to \infty$ with two seemingly contradicting properties:

- High Connectivity: $h(G_n) \ge \epsilon$.
- Sparsity: $\max_{v} \deg_{G_n}(v) \leq d$.

Pinsker:

Random $3 \le d$ -regular graphs are (d, ϵ) -expanders.

(d, ϵ) -Expanders

A family of graphs $\{G_n = (V_n, E_n)\}_n$ with $|V_n| \to \infty$ with two seemingly contradicting properties:

- High Connectivity: $h(G_n) \ge \epsilon$.
- Sparsity: $\max_{v} \deg_{G_n}(v) \leq d$.

Pinsker:

Random $3 \le d$ -regular graphs are (d, ϵ) -expanders.

Margulis:

Explicit construction of expanders.

(d, ϵ) -Expanders

A family of graphs $\{G_n = (V_n, E_n)\}_n$ with $|V_n| \to \infty$ with two seemingly contradicting properties:

- High Connectivity: $h(G_n) \ge \epsilon$.
- Sparsity: $\max_{v} \deg_{G_n}(v) \leq d$.

Pinsker:

Random $3 \le d$ -regular graphs are (d, ϵ) -expanders.

Margulis:

Explicit construction of expanders.

Lubotzky-Phillips-Sarnak, Margulis:

Ramanujan Graphs - an "optimal" family of expanders.

Spectral Gap

Laplacian Matrix G = (V, E) a graph, |V| = n.

The Laplacian of G is the $V \times V$ matrix L_G :

$$\mathcal{L}_{\mathcal{G}}(\mathbf{u},\mathbf{v}) = \left\{ egin{array}{ll} \mathsf{deg}(u) & u = v \ -1 & uv \in E \ 0 & ext{otherwise.} \end{array}
ight.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Spectral Gap

Laplacian Matrix G = (V, E) a graph, |V| = n.

The Laplacian of G is the $V \times V$ matrix L_G :

$$L_G(u,v) = \left\{ egin{array}{cc} \deg(u) & u = v \ -1 & uv \in E \ 0 & otherwise. \end{array}
ight.$$

Eigenvalues of L_G

$$0 = \mu_1(G) \le \mu_2(G) \le \dots \le \mu_n(G).$$

 $\mu_2(G) =$ Spectral Gap of $G.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Expansion and Spectral Gap

Theorem (Alon-Milman, Tanner): For all $\emptyset \neq S \subsetneq V$ $e(S,\overline{S}) \ge \frac{|S||\overline{S}|}{n}\mu_2.$

In particular

$$h(G) \geq \frac{\mu_2}{2}.$$

Expansion and Spectral Gap

Theorem (Alon-Milman, Tanner): For all $\emptyset \neq S \subsetneq V$ $e(S,\overline{S}) \ge \frac{|S||\overline{S}|}{n}\mu_2.$

In particular

$$h(G)\geq \frac{\mu_2}{2}.$$

Theorem (Alon, Dodziuk): If *G* is *d*-regular then

$$h(G) \leq \sqrt{2d\mu_2}.$$

Expansion and Spectral Gap

Theorem (Alon-Milman, Tanner): For all $\emptyset \neq S \subsetneq V$ $e(S,\overline{S}) \ge \frac{|S||\overline{S}|}{n}\mu_2.$

In particular

$$h(G)\geq \frac{\mu_2}{2}.$$

Theorem (Alon, Dodziuk): If *G* is *d*-regular then

$$h(G) \leq \sqrt{2d\mu_2}.$$

Expanders can thus be defined using the spectral gap.

Why Expanding Graphs?

Uses of Expanders

- Construction of efficient communication networks.
- Randomization reduction in probabilistic algorithms.
- Construction of good error correcting (LDPC) codes.

Tools in computational complexity lower bounds.

Why Expanding Graphs?

Uses of Expanders

- Construction of efficient communication networks.
- Randomization reduction in probabilistic algorithms.
- Construction of good error correcting (LDPC) codes.
- Tools in computational complexity lower bounds.

Interactions with Other Areas

- Expansion and Kazhdan's property T.
- Expanders as spaces of maximal Euclidean distortion.

- Dimension expanders and representation theory.
- Expanders on finite simple groups.

What are Expanding Complexes?

Three Notions of Expansion

- Combinatorial: via the mixing property.
- Spectral: via eigenvalues of the higher Laplacians.
- Cohomological: via the Hamming weights of coboundaries.

What are Expanding Complexes?

Three Notions of Expansion

- Combinatorial: via the mixing property.
- Spectral: via eigenvalues of the higher Laplacians.
- Cohomological: via the Hamming weights of coboundaries.

Cohomological Expansion

This notion is strongly tied to topology, e.g. :

- Linial-M-Wallach: Homology of random complexes.
- Gromov: The topological overlap property.
- Gundert-Wagner: Laplacians of random complexes.
- Dotterrer-Kahle: Expansion of random subcomplexes.

Simplicial Cohomology

X a simplicial complex on V, R a fixed abelian group. *i*-face of $\sigma = [v_0, \dots, v_k]$ is $\sigma_i = [v_0, \dots, \hat{v_i}, \dots, v_k]$. $C^k(X) = k$ -cochains = skew-symmetric maps $\phi : X(k) \to R$. Coboundary Operator $d_k : C^k(X) \to C^{k+1}(X)$ given by

$$d_k \phi(\sigma) = \sum_{i=0}^{k+1} (-1)^i \phi(\sigma_i)$$
 .

Simplicial Cohomology

X a simplicial complex on V, R a fixed abelian group. *i*-face of $\sigma = [v_0, \dots, v_k]$ is $\sigma_i = [v_0, \dots, \hat{v_i}, \dots, v_k]$. $C^k(X) = k$ -cochains = skew-symmetric maps $\phi : X(k) \to R$. Coboundary Operator $d_k : C^k(X) \to C^{k+1}(X)$ given by

$$d_k \phi(\sigma) = \sum_{i=0}^{k+1} (-1)^i \phi(\sigma_i)$$
 .

$$\begin{array}{l} d_{-1}: C^{-1}(X) = R \to C^0(X) \text{ given by} \\ d_{-1}a(v) = a \text{ for } a \in R \ , \ v \in V. \\ Z^k(X) = k \text{-cocycles} = \ker(d_k). \\ B^k(X) = k \text{-coboundaries} = Im(d_{k-1}). \\ k \text{-th reduced cohomology group of } X: \end{array}$$

$$\tilde{H}^{k}(X) = \tilde{H}^{k}(X; R) = Z^{k}(X)/B^{k}(X)$$

Cut of a Cochain

Cut determined by a *k*-cochain $\phi \in C^k(X; R)$:

$$supp(d_k\phi) = \{\tau \in X(k+1) : d_k\phi(\tau) \neq 0\}$$
.
Cut Size of ϕ : $||d_k\phi|| = |supp(d_k\phi)|$.

Cut of a Cochain

Cut determined by a k-cochain $\phi \in C^k(X; R)$:

$$supp(d_k\phi) = \{\tau \in X(k+1) : d_k\phi(\tau) \neq 0\}$$
.
Cut Size of ϕ : $||d_k\phi|| = |supp(d_k\phi)|$.
Example:

$$\|d_1\phi\| = |\{\sigma_1, \sigma_2\}| = 2$$

Hamming Weight of a Cochain

The Weight of a *k*-cochain $\phi \in C^k(X; R)$:

$$\|[\phi]\| = \min \{ |supp(\phi + d_{k-1}\psi)| : \psi \in C^{k-1}(X; R) \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hamming Weight of a Cochain

The Weight of a k-cochain $\phi \in C^k(X; R)$: $\|[\phi]\| = \min \{ |supp(\phi + d_{k-1}\psi)| : \psi \in C^{k-1}(X; R) \}.$

Example: $\|\phi\| = 3$ but $\|[\phi]\| = 1$

イロト 不得 トイヨト イヨト

э

Expansion of a Complex

Expansion of a Cochain

The expansion of $\phi \in C^k(X; R) - B^k(X; R)$ is

 $\frac{\|d_k\phi\|}{\|[\phi]\|}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Expansion of a Complex

Expansion of a Cochain The expansion of $\phi \in C^k(X; R) - B^k(X; R)$ is

 $\frac{\|d_k\phi\|}{\|[\phi]\|}$

k-Cheeger Constant

$$h_k(X;R) = \min\left\{\frac{\|d_k\phi\|}{\|[\phi]\|} : \phi \in C^k(X;R) - B^k(X;R)\right\}.$$

Expansion of a Complex

Expansion of a Cochain The expansion of $\phi \in C^k(X; R) - B^k(X; R)$ is

 $\frac{\|d_k\phi\|}{\|[\phi]\|}$

k-Cheeger Constant

$$h_k(X;R) = \min\left\{\frac{\|d_k\phi\|}{\|[\phi]\|} : \phi \in C^k(X;R) - B^k(X;R)\right\}.$$

Remarks:

•
$$h_k(X; R) > 0 \Leftrightarrow \tilde{H}^k(X; R) = 0.$$

▶ In the sequel: $h_k(X) = h_k(X; \mathbb{F}_2)$.

Cheeger Constants of a Simplex

 Δ_{n-1} = the (n-1)-dimensional simplex on V = [n]. Claim [M-Wallach, Gromov]:

$$h_{k-1}(\Delta_{n-1})=\frac{n}{k+1}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Cheeger Constants of a Simplex

 Δ_{n-1} = the (n-1)-dimensional simplex on V = [n]. Claim [M-Wallach, Gromov]:

$$h_{k-1}(\Delta_{n-1})=\frac{n}{k+1}.$$

Example:

$$[n] = \bigcup_{i=0}^{k} V_i , \ |V_i| = \frac{n}{k+1}$$
$$\phi = 1_{V_0 \times \dots \times V_{k-1}}$$
$$\|[\phi]\| = (\frac{n}{k+1})^k$$
$$\|d_{k-1}\phi\| = (\frac{n}{k+1})^{k+1}$$

The Affine Overlap Property

Number of Intersecting Simplices For $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^k$ and $p \in \mathbb{R}^k$ let

$$\gamma_{\mathcal{A}}(p) = |\{\sigma \subset [n] : |\sigma| = k+1 , p \in \operatorname{conv}\{a_i\}_{i \in \sigma}\}|.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Affine Overlap Property

Number of Intersecting Simplices
For
$$A = \{a_1, ..., a_n\} \subset \mathbb{R}^k$$
 and $p \in \mathbb{R}^k$ let
 $\gamma_A(p) = |\{\sigma \subset [n] : |\sigma| = k + 1, p \in \operatorname{conv}\{a_i\}_{i \in \sigma}\}|.$

Theorem [Bárány]:

There exists a $p \in \mathbb{R}^k$ such that

$$f_A(p) \geq rac{1}{(k+1)^k} inom{n}{k+1} - O(n^k).$$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

The Topological Overlap Property

Number of Intersecting Images

For a continuous map $f:\Delta_{n-1} o \mathbb{R}^k$ and $p \in \mathbb{R}^k$ let

$$\gamma_f(p) = |\{\sigma \in \Delta_{n-1}(k) : p \in f(\sigma)\}|.$$

The Topological Overlap Property

Number of Intersecting Images

For a continuous map $f:\Delta_{n-1} o \mathbb{R}^k$ and $p \in \mathbb{R}^k$ let

$$\gamma_f(p) = |\{\sigma \in \Delta_{n-1}(k) : p \in f(\sigma)\}|.$$

Theorem [Gromov]:

There exists a $p \in \mathbb{R}^k$ such that

$$\gamma_f(p) \geq rac{2k}{(k+1)!(k+1)} inom{n}{k+1} - O(n^k).$$

Topological Overlap and Expansion

Number of Intersecting Images

For a continuous map $f: X \to \mathbb{R}^k$ and $p \in \mathbb{R}^k$ let

$$\gamma_f(p) = |\{\sigma \in X(k) : p \in f(\sigma)\}|.$$

Topological Overlap and Expansion

Number of Intersecting Images

For a continuous map $f:X
ightarrow \mathbb{R}^k$ and $p\in \mathbb{R}^k$ let

$$\gamma_f(p) = |\{\sigma \in X(k) : p \in f(\sigma)\}|.$$

Expansion Condition on X Suppose that for all $0 \le i \le k - 1$

$$h_i(X) \ge \epsilon \cdot rac{f_{i+1}(X)}{f_i(X)}.$$

Topological Overlap and Expansion

Number of Intersecting Images

For a continuous map $f:X
ightarrow \mathbb{R}^k$ and $p\in \mathbb{R}^k$ let

$$\gamma_f(p) = |\{\sigma \in X(k) : p \in f(\sigma)\}|.$$

Expansion Condition on X Suppose that for all $0 \le i \le k - 1$

$$h_i(X) \geq \epsilon \cdot rac{f_{i+1}(X)}{f_i(X)}.$$

Theorem [Gromov]

There exists a $\delta = \delta(k, \epsilon)$ such that for any continuous map $f: X \to \mathbb{R}^k$ there exists a $p \in \mathbb{R}^k$ such that

 $\gamma_f(p) \geq \delta f_k(X).$
Degree of a Simplex For $\sigma \in X(k-1)$ let $\deg(\sigma) = |\{\tau \in X(k) : \sigma \subset \tau\}|$. $D_{k-1}(X) = \max_{\sigma \in X(k-1)} \deg(\sigma)$.

Degree of a Simplex For $\sigma \in X(k-1)$ let $\deg(\sigma) = |\{\tau \in X(k) : \sigma \subset \tau\}|$. $D_{k-1}(X) = \max_{\sigma \in X(k-1)} \deg(\sigma)$.

- (k, d, ϵ) -Expanders
- A family of Complexes $\{X_n\}_n$ with $f_0(X_n) \to \infty$ such that

$$D_{k-1}(X_n) \leq d$$
 and $h_{k-1}(X_n) \geq \epsilon$.

Degree of a Simplex For $\sigma \in X(k-1)$ let $\deg(\sigma) = |\{\tau \in X(k) : \sigma \subset \tau\}|$. $D_{k-1}(X) = \max_{\sigma \in X(k-1)} \deg(\sigma)$.

 (k, d, ϵ) -Expanders A family of Complexes $\{X_n\}_n$ with $f_0(X_n) \to \infty$ such that

$$D_{k-1}(X_n) \leq d$$
 and $h_{k-1}(X_n) \geq \epsilon$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Random Complexes as Expanders $Y \in Y_k(n, p = \frac{k^2 \log n}{n})$ is a.a.s. a $(k, \log n, 1)$ -expander.

Degree of a Simplex For $\sigma \in X(k-1)$ let $\deg(\sigma) = |\{\tau \in X(k) : \sigma \subset \tau\}|$. $D_{k-1}(X) = \max_{\sigma \in X(k-1)} \deg(\sigma)$.

 (k, d, ϵ) -Expanders A family of Complexes $\{X_n\}_n$ with $f_0(X_n) \to \infty$ such that

$$D_{k-1}(X_n) \leq d$$
 and $h_{k-1}(X_n) \geq \epsilon$.

Random Complexes as Expanders $Y \in Y_k(n, p = \frac{k^2 \log n}{n})$ is a.a.s. a $(k, \log n, 1)$ -expander.

Problem

Do there exist (k, d, ϵ) -expanders with $k \ge 2$ and fixed d, ϵ ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Latin Squares

Definitions

 $\mathbb{S}_n =$ Symmetric group on [n]. $(\pi_1, \ldots, \pi_k) \in \mathbb{S}_n^k$ is legal if $\pi_i(\ell) \neq \pi_j(\ell)$ for all ℓ and $i \neq j$. A Latin Square is a legal *n*-tuple $L = (\pi_1, \ldots, \pi_n) \in \mathbb{S}_n^n$. $\mathcal{L}_n =$ Latin squares of order *n* with uniform measure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Latin Squares

Definitions

 $\mathbb{S}_n =$ Symmetric group on [n]. $(\pi_1, \ldots, \pi_k) \in \mathbb{S}_n^k$ is legal if $\pi_i(\ell) \neq \pi_j(\ell)$ for all ℓ and $i \neq j$. A Latin Square is a legal *n*-tuple $L = (\pi_1, \ldots, \pi_n) \in \mathbb{S}_n^n$. $\mathcal{L}_n =$ Latin squares of order *n* with uniform measure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Usual Picture $L = (\pi_1, ..., \pi_n) \leftrightarrow T_L \in M_{n \times n}([n])$ $T_L(i, \pi_k(i)) = k \text{ for } 1 \le i, k \le n.$

Latin Squares

Definitions

 $\mathbb{S}_n =$ Symmetric group on [n]. $(\pi_1, \ldots, \pi_k) \in \mathbb{S}_n^k$ is legal if $\pi_i(\ell) \neq \pi_j(\ell)$ for all ℓ and $i \neq j$. A Latin Square is a legal *n*-tuple $L = (\pi_1, \ldots, \pi_n) \in \mathbb{S}_n^n$. $\mathcal{L}_n =$ Latin squares of order *n* with uniform measure.

The Usual Picture $L = (\pi_1, ..., \pi_n) \leftrightarrow T_L \in M_{n \times n}([n])$ $T_L(i, \pi_k(i)) = k \text{ for } 1 \le i, k \le n.$

Example for n = 4

$$\pi = (1234)$$

 $L = (Id, \pi, \pi^2, \pi^3)$ $T_L =$

1	2	3	4
4	1	2	3
3	4	1	2
2	3	4	1

The Complete 3-Partite Complex

$$V_1 = \{a_1, \dots, a_n\} , V_2 = \{b_1, \dots, b_n\} , V_3 = \{c_1, \dots, c_n\}$$
$$T_n = V_1 * V_2 * V_3 = \{\sigma \subset V : |\sigma \cap V_i| \le 1 \text{ for } 1 \le i \le 3\}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

The Complete 3-Partite Complex

$$V_1 = \{a_1, \dots, a_n\} , V_2 = \{b_1, \dots, b_n\} , V_3 = \{c_1, \dots, c_n\}$$
$$T_n = V_1 * V_2 * V_3 = \{\sigma \subset V : |\sigma \cap V_i| \le 1 \text{ for } 1 \le i \le 3\}$$

・ロト ・聞ト ・ヨト ・ヨト

æ

The Complete 3-Partite Complex

$$V_1 = \{a_1, \dots, a_n\} , V_2 = \{b_1, \dots, b_n\} , V_3 = \{c_1, \dots, c_n\}$$
$$T_n = V_1 * V_2 * V_3 = \{\sigma \subset V : |\sigma \cap V_i| \le 1 \text{ for } 1 \le i \le 3\}$$

$$T_n \simeq S^2 \lor \cdots \lor S^2$$
 $(n-1)^3$ times

Latin Square Complexes

 $L = (\pi_1, \ldots, \pi_n) \in \mathcal{L}_n$ defines a complex $Y(L) \subset T_n$ by

 $Y(L)(2) = \{ [a_i, b_j, c_{\pi_i(j)}] : 1 \le i, j \le n \}.$

Latin Square Complexes $L = (\pi_1, ..., \pi_n) \in \mathcal{L}_n$ defines a complex $Y(L) \subset T_n$ by

$$Y(L)(2) = \{ [a_i, b_j, c_{\pi_i(j)}] : 1 \le i, j \le n \}.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Latin Square Complexes $L = (\pi_1, ..., \pi_n) \in \mathcal{L}_n$ defines a complex $Y(L) \subset T_n$ by

$$Y(L)(2) = \{ [a_i, b_j, c_{\pi_i(j)}] : 1 \le i, j \le n \}.$$

Random Latin Squares Complexes

Multiple Latin Squares For $\underline{L}^d = (L_1, \dots, L_d) \in \mathcal{L}_n^d$ let $Y(\underline{L}^d) = \bigcup_{i=1}^d Y(L_i)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Random Latin Squares Complexes

Multiple Latin Squares For $\underline{L}^d = (L_1, \dots, L_d) \in \mathcal{L}_n^d$ let $Y(\underline{L}^d) = \bigcup_{i=1}^d Y(L_i)$.

The Probability Space $\mathcal{Y}(n, d)$

 $\mathcal{L}_n^d = d$ -tuples of Latin squares of order n with uniform measure. $\mathcal{Y}(n, d) = \{Y(\underline{L}^d) : \underline{L}^d \in \mathcal{L}_n^d\}$ with induced measure from \mathcal{L}_n^d .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Random Latin Squares Complexes

Multiple Latin Squares For $\underline{L}^d = (L_1, ..., L_d) \in \mathcal{L}_n^d$ let $Y(\underline{L}^d) = \bigcup_{i=1}^d Y(L_i)$. The Probability Space $\mathcal{Y}(n, d)$ $\mathcal{L}_n^d = d$ -tuples of Latin squares of order n with uniform measure. $\mathcal{Y}(n, d) = \{Y(\underline{L}^d) : \underline{L}^d \in \mathcal{L}_n^d\}$ with induced measure from \mathcal{L}_n^d .

Theorem (LM):

There exist $\epsilon > 0, d < \infty$ such that

$$\lim_{n\to\infty}\Pr\left[Y\in\mathcal{Y}(n,d):h_1(Y)>\epsilon\right]=1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: $\epsilon = 10^{-11}$ and $d = 10^{11}$ will do.

Idea of Proof

Fix
$$0 < c < 1$$
 and let $\phi \in C^1(T_n; \mathbb{F}_2)$.

$$\phi$$
 is $\left\{ egin{array}{ll} m{c}-{
m small} & {
m if} \ \|[\phi]\|\leq cn^2 \ m{c}-{
m large} & {
m if} \ \|[\phi]\|\geq cn^2 \end{array}
ight.$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Idea of Proof

Fix
$$0 < c < 1$$
 and let $\phi \in C^1(T_n; \mathbb{F}_2)$.

$$\phi \quad \text{is} \quad \left\{ \begin{array}{ll} c - \text{small} & \text{if} \quad \|[\phi]\| \leq cn^2 \\ c - \text{large} & \text{if} \quad \|[\phi]\| \geq cn^2 \end{array} \right.$$

c-Small Cochains

Lower bound on expansion in terms of the spectral gap of the vertex links.

Idea of Proof

Fix
$$0 < c < 1$$
 and let $\phi \in C^1(\mathcal{T}_n; \mathbb{F}_2)$.

$$\phi \quad \text{is} \quad \left\{ \begin{array}{ll} c - \text{small} & \text{if} \quad \|[\phi]\| \leq cn^2 \\ c - \text{large} & \text{if} \quad \|[\phi]\| \geq cn^2 \end{array} \right.$$

c-Small Cochains

Lower bound on expansion in terms of the spectral gap of the vertex links.

c-Large Cochains

Expansion is obtained by means of a new large deviations bound for the probability space \mathcal{L}_n of Latin squares.

2-Expansion and Spectral Gap

Notation For a complex $T_n^{(1)} \subset Y \subset T_n$ let: $Y_v = lk(Y, v) =$ the link of $v \in V$. μ_v = spectral gap of the $n \times n$ bipartite graph Y_v . $\tilde{\mu} = \min_{v \in V} \mu_v$. $d = D_1(Y) =$ maximum edge degree in Y.

2-Expansion and Spectral Gap

Notation For a complex $T_n^{(1)} \subset Y \subset T_n$ let: $Y_v = lk(Y, v) =$ the link of $v \in V$. μ_v = spectral gap of the $n \times n$ bipartite graph Y_v . $\tilde{\mu} = \min_{v \in V} \mu_v$. $d = D_1(Y) =$ maximum edge degree in Y.

Theorem (LM): If $\|[\phi]\| \le cn^2$ then

$$\|d_1\phi\| \geq \left(rac{(1-c^{1/3}) ilde{\mu}}{2} - rac{d}{3}
ight)\|[\phi]\|.$$

Spectral Gap of Random Graphs

Random Bipartite Graphs

 $ilde{\pi} = (\pi_1, \dots, \pi_d) \in \mathbb{S}_n^d$ defines a graph $G = G(ilde{\pi})$ by

$$E(G) = \{ (i, \pi_j(i)) : 1 \le i \le n, 1 \le j \le d \} \subset [n]^2.$$

 $\mathcal{G}(n,d)$ = uniform probability space $\{G(\tilde{\pi}): \tilde{\pi} \in \mathbb{S}_n^d\}$.

Spectral Gap of Random Graphs

Random Bipartite Graphs

 $ilde{\pi} = (\pi_1, \dots, \pi_d) \in \mathbb{S}_n^d$ defines a graph $G = G(ilde{\pi})$ by

$$E(G) = \{ (i, \pi_j(i)) : 1 \le i \le n, 1 \le j \le d \} \subset [n]^2.$$

 $\mathcal{G}(n,d)$ = uniform probability space $\{G(\tilde{\pi}): \tilde{\pi} \in \mathbb{S}_n^d\}$.

Theorem (Friedman):

For a fixed $d \ge 100$:

$$\Pr[G \in \mathcal{G}(n,d) : \mu_2(G) > d - 3\sqrt{d}] = 1 - O(n^{-2}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Expansion of *c*-Small Cochains

Links as Random Graphs

Let $Y = Y(\underline{L}^d)$ be a random complex in $\mathcal{Y}(n, d)$. Then $Y_v = lk(Y, v)$ is a random graph in $\mathcal{G}(n, d)$. Therefore

$$\Pr[\tilde{\mu} \ge d - 3\sqrt{d}] = 1 - O(n^{-1}).$$

Expansion of *c*-Small Cochains

Links as Random Graphs

Let $Y = Y(\underline{L}^d)$ be a random complex in $\mathcal{Y}(n, d)$. Then $Y_v = lk(Y, v)$ is a random graph in $\mathcal{G}(n, d)$. Therefore

$$\Pr[\tilde{\mu} \ge d - 3\sqrt{d}] = 1 - O(n^{-1}).$$

Corollary:

Let $d \geq 100$ and $c < 10^{-3}$. If $\|[\phi]\| \leq cn^2$ then

$$egin{aligned} & rac{\|d_1\phi\|}{\|[\phi]\|} \geq rac{(1-c^{1/3}) ilde{\mu}}{2} - rac{d}{3} \ & \geq rac{(1-c^{1/3})(d-3\sqrt{d})}{2} - rac{d}{3} > 1. \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Large Deviations for Latin Squares

The Random Variable $f_{\mathcal{E}}$

 \mathcal{E} - a family of 2-simplices of T_n , $|\mathcal{E}| \ge cn^3$. For a Latin square $L \in \mathcal{L}_n$ let

$$f_{\mathcal{E}}(L) = |Y(L) \cap \mathcal{E}|.$$

Then

$$E[f_{\mathcal{E}}] = \frac{|\mathcal{E}|}{n} \ge cn^2.$$

Large Deviations for Latin Squares

The Random Variable $f_{\mathcal{E}}$

 \mathcal{E} - a family of 2-simplices of T_n , $|\mathcal{E}| \ge cn^3$. For a Latin square $L \in \mathcal{L}_n$ let

$$f_{\mathcal{E}}(L) = |Y(L) \cap \mathcal{E}|.$$

Then

$$E[f_{\mathcal{E}}] = \frac{|\mathcal{E}|}{n} \ge cn^2.$$

Theorem (LM): For all $n \ge n_0(c)$

$$Pr[L \in \mathcal{L}_n : f_{\mathcal{E}}(L) < 10^{-3}c^2n^2] < e^{-10^{-3}c^2n^2}$$

Remarks on the Proof

For $[a_i, b_j, c_k] \in \mathcal{E}$ define a 0-1 random variable Z_{ijk} on \mathcal{L}_n by $Z_{ijk}(L) = 1$ iff $\pi_i(j) = k$. Then

$$f_{\mathcal{E}} = \sum_{ijk} Z_{ijk}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remarks on the Proof

For $[a_i, b_j, c_k] \in \mathcal{E}$ define a 0 - 1 random variable Z_{ijk} on \mathcal{L}_n by $Z_{ijk}(L) = 1$ iff $\pi_i(j) = k$. Then

$$f_{\mathcal{E}} = \sum_{ijk} Z_{ijk}.$$

The Z_{ijk} are however far from independent and thus one cannot apply standard Chernoff type bounds.

Remarks on the Proof

For $[a_i, b_j, c_k] \in \mathcal{E}$ define a 0 - 1 random variable Z_{ijk} on \mathcal{L}_n by $Z_{ijk}(L) = 1$ iff $\pi_i(j) = k$. Then

$$f_{\mathcal{E}} = \sum_{ijk} Z_{ijk}$$

The Z_{ijk} are however far from independent and thus one cannot apply standard Chernoff type bounds.

The actual proof uses a different approach, relying among other things on Brégman's permanent bound and on the classical asymptotic enumeration of Latin squares:

$$|\mathcal{L}_n| = \left(\frac{(1+o(1))n}{e^2}\right)^{n^2}$$

Expansion in T_n

Theorem (Dotterrer and Kahle): $h_1(T_n) \ge \frac{n}{5}$. Therefore, if $\phi \in C^1(T_n)$ then

$$\mathcal{E} = \{ \sigma \in T_n(2) : d_1 \phi(\sigma) \neq 0 \}$$

satisfies

$$|\mathcal{E}| = ||d_1\phi||_{T_n} \ge \frac{n}{5}||[\phi]|| \ge \frac{cn^3}{5}.$$

Expansion in T_n

Theorem (Dotterrer and Kahle): $h_1(T_n) \ge \frac{n}{5}$. Therefore, if $\phi \in C^1(T_n)$ then

$$\mathcal{E} = \{ \sigma \in T_n(2) : d_1 \phi(\sigma) \neq 0 \}$$

satisfies

$$|\mathcal{E}| = ||d_1\phi||_{\mathcal{T}_n} \ge \frac{n}{5}||[\phi]|| \ge \frac{cn^3}{5}.$$

Expansion in Y(L)If $L \in \mathcal{L}_n$ then $||d_1\phi||_{Y(L)} = |Y(L) \cap \mathcal{E}| = f_{\mathcal{E}}(L)$. Hence, by the large deviation bound:

$$\Pr[L \in \mathcal{L}_n : \|d_1\phi\|_{Y(L)} < \delta c^2 n^2] < e^{-\delta c^2 n^2}.$$

for some absolute $\delta > 0$.

Let
$$\underline{L}^d = (L_1, \dots, L_d) \in \mathcal{L}_n^d$$
. Then
 $\|d_1\phi\|_{Y(\underline{L}^d)} = |Y(\underline{L}^d) \cap \mathcal{E}| \ge \max_{1 \le i \le d} f_{\mathcal{E}}(L_i).$

Let
$$\underline{L}^d = (L_1, \dots, L_d) \in \mathcal{L}_n^d$$
. Then
 $\|d_1\phi\|_{Y(\underline{L}^d)} = |Y(\underline{L}^d) \cap \mathcal{E}| \ge \max_{1 \le i \le d} f_{\mathcal{E}}(L_i).$

It follows that

$$Pr\left[\underline{L}^{d} \in \mathcal{L}_{n}^{d} : \|d_{1}\phi\|_{Y(\underline{L}^{d})} < \delta c^{2}n^{2}\right] < e^{-\delta dc^{2}n^{2}}.$$

Let
$$\underline{L}^d = (L_1, \dots, L_d) \in \mathcal{L}_n^d$$
. Then
 $\|d_1\phi\|_{Y(\underline{L}^d)} = |Y(\underline{L}^d) \cap \mathcal{E}| \ge \max_{1 \le i \le d} f_{\mathcal{E}}(L_i).$

It follows that

$$\Pr\left[\underline{L}^d \in \mathcal{L}^d_n : \|d_1\phi\|_{Y(\underline{L}^d)} < \delta c^2 n^2\right] < e^{-\delta dc^2 n^2}.$$

Since $|C^1(T_n; \mathbb{F}_2)| = 2^{3n^2}$ it follows that

 $\Pr[\|d_1\phi\|_{Y(\underline{L}^d)} < \delta c^2 n^2 \text{ for some c-large } \phi] < 2^{3n^2} e^{-\delta dc^2 n^2}.$

Let
$$\underline{L}^d = (L_1, \dots, L_d) \in \mathcal{L}_n^d$$
. Then
 $\|d_1\phi\|_{Y(\underline{L}^d)} = |Y(\underline{L}^d) \cap \mathcal{E}| \ge \max_{1 \le i \le d} f_{\mathcal{E}}(L_i).$

It follows that

$$\Pr\left[\underline{L}^{d} \in \mathcal{L}_{n}^{d} : \|d_{1}\phi\|_{Y(\underline{L}^{d})} < \delta c^{2}n^{2}\right] < e^{-\delta dc^{2}n^{2}}.$$

Since $|C^1(T_n; \mathbb{F}_2)| = 2^{3n^2}$ it follows that

 $\Pr[\|d_1\phi\|_{Y(\underline{L}^d)} < \delta c^2 n^2 \text{ for some c-large } \phi] < 2^{3n^2} e^{-\delta dc^2 n^2}.$

Choosing *d* large it follows that a.a.s. for all c-large ϕ :

$$\frac{\|d_1\phi\|_{\boldsymbol{Y}(\underline{L}^d)}}{\|\phi\|} \geq \frac{\delta c^2 n^2}{3n^2} = \frac{\delta c^2}{3}.$$
Homological Connectivity on $\mathcal{Y}(n, d)$

Corollary:

There exists $d < \infty$ such that

 $\lim_{n\to\infty}\Pr\left[Y\in\mathcal{Y}(n,d):H_1(Y;\mathbb{F}_2)=0\right]=1.$

Homological Connectivity on $\mathcal{Y}(n, d)$

Corollary: There exists $d < \infty$ such that

$$\lim_{n\to\infty}\Pr\left[Y\in\mathcal{Y}(n,d):H_1(Y;\mathbb{F}_2)=0\right]=1.$$

Claim:

$$\lim_{n\to\infty} \Pr[H_1(Y(L_1,L_2,L_3);\mathbb{F}_2)\neq 0] \geq 1 - \frac{17e^{-3}}{2} \doteq 0.57.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Homological Connectivity on $\mathcal{Y}(n, d)$

Corollary: There exists $d < \infty$ such that

$$\lim_{n\to\infty} \Pr\left[Y\in\mathcal{Y}(n,d):H_1(Y;\mathbb{F}_2)=0\right]=1.$$

Claim:

$$\lim_{n\to\infty} \Pr[H_1(Y(L_1,L_2,L_3);\mathbb{F}_2)\neq 0] \geq 1-\frac{17e^{-3}}{2}\doteq 0.57.$$

Theorem (Garland): If in a 2-dimensional complex Y all vertex links have sufficiently large spectral gaps then $H_1(Y; \mathbb{R}) = 0$.

Corollary: If $d \ge 100$ then $H_1(Y; \mathbb{R}) = 0$ a.a.s. for $Y \in \mathcal{Y}(n, d)$.

Topological Overlap Property for $\mathcal{Y}(n, d)$

Corollary:

There exist $\delta > 0$ and d such that $Y \in \mathcal{Y}(n, d)$ a.a.s. satisfies the following:

For any continuous map $f: Y \to \mathbb{R}^2$ there exists $p \in \mathbb{R}^2$ such that

 $\gamma_{\mathbf{Y}}(\mathbf{p}) \geq \delta \mathbf{n}^2.$

▲□▶ ▲圖▶ ▲直▶ ▲直▶ 三直 - のへで

► Find explicit constructions of bounded degree expanders.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- Find explicit constructions of bounded degree expanders.
- Are Ramanujan complexes high dimensional expanders?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Find explicit constructions of bounded degree expanders.
- Are Ramanujan complexes high dimensional expanders?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► The model 𝒴(n, d) generalizes to higher dimensions. Does the Theorem remain true there?

- Find explicit constructions of bounded degree expanders.
- Are Ramanujan complexes high dimensional expanders?

- ► The model 𝒴(n, d) generalizes to higher dimensions. Does the Theorem remain true there?
- Find the minimal *d* for which Theorem 1 holds.