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(d, €)-Expanders
A family of graphs {G, = (V,, Ep) }n with |V,| — 00
with two seemingly contradicting properties:

» High Connectivity: h(G,) > e.
> Sparsity: max, degg (v) < d.

Pinsker:
Random 3 < d-regular graphs are (d, €)-expanders.

Margulis:
Explicit construction of expanders.

Lubotzky-Phillips-Sarnak, Margulis:
Ramanujan Graphs - an "optimal” family of expanders.
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The Laplacian of G is the V x V matrix Lg:
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Spectral Gap

Laplacian Matrix
G = (V,E) a graph, |V|=n.

The Laplacian of G is the V x V matrix Lg:

deg(u) u=v
Lo(u,v) =< —1 uv € E

0 otherwise.

Eigenvalues of L¢

0= p1(G) < p2(G) < -+ < pn(G).
u2(G) = Spectral Gap of G.
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Expansion and Spectral Gap

Theorem (Alon-Milman, Tanner):
Forall0 #S G V

5,52 19181,
In particular
h(G) > %

Theorem (Alon, Dodziuk):
If G is d-regular then

h(G) < v/2dpo.

Expanders can thus be defined using the spectral gap.
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» Tools in computational complexity lower bounds.



Why Expanding Graphs?

Uses of Expanders

» Construction of efficient communication networks.
» Randomization reduction in probabilistic algorithms.
» Construction of good error correcting (LDPC) codes.

» Tools in computational complexity lower bounds.

Interactions with Other Areas

Expansion and Kazhdan’s property T.

>
» Expanders as spaces of maximal Euclidean distortion.
» Dimension expanders and representation theory.

>

Expanders on finite simple groups.
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» Combinatorial: via the mixing property.
» Spectral: via eigenvalues of the higher Laplacians.
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What are Expanding Complexes?

Three Notions of Expansion

» Combinatorial: via the mixing property.
» Spectral: via eigenvalues of the higher Laplacians.
» Cohomological: via the Hamming weights of coboundaries.

Cohomological Expansion

This notion is strongly tied to topology, e.g. :
» Linial-M-Wallach: Homology of random complexes.
» Gromov: The topological overlap property.
» Gundert-Wagner: Laplacians of random complexes.

» Dotterrer-Kahle: Expansion of random subcomplexes.
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i-face of o = [vg, -+ , vk is oj = [vo, - , Vi, -+, vk

CK(X) = k-cochains = skew-symmetric maps ¢ : X(k) — R.
Coboundary Operator dy : CK(X) — CKT1(X) given by

k+1

dip(7) = _(-1)'¢(07) -

i=0



Simplicial Cohomology

X a simplicial complex on V, R a fixed abelian group.

i-face of o = [vg, -+ , vk is oj = [vo, - , Vi, -+, vk

CK(X) = k-cochains = skew-symmetric maps ¢ : X(k) — R.
Coboundary Operator dy : CK(X) — CKT1(X) given by

k+1

dip(7) = _(-1)'¢(07) -

i=0

d_1: CYX) =R — C%X) given by
d_ja(v)=aforaec R, veV.

Z¥(X) = k-cocycles = ker(dy).
B¥(X) = k-coboundaries = Im(dj_1).
k-th reduced cohomology group of X:

A (X) = B (X; R) = Z(X)/B¥(X) .
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Cut of a Cochain

Cut determined by a k-cochain ¢ € CK(X; R):

supp(dipp) = {7 € X(k+1) : dko(7) # 0} .
Cut Size of ¢ ||dio]| = |supp(cicd).

Example:

01 02

0

|d1o|| = [{o1, 02} =2
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Hamming Weight of a Cochain

The Weight of a k-cochain ¢ € CX(X; R):

Ii¢]ll = min { [supp(¢ + dk—19)| = ¥ € C<HX;R) }.

Example: ||¢|| =3 but ||[¢]|| =1
A
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Expansion of a Complex

Expansion of a Cochain
The expansion of ¢ € CK(X; R) — BK(X; R) is

ldkl
el

k-Cheeger Constant

ldkl
ol

hk(X;R):min{ o€ C"(X;R)B"(X;R)}.
Remarks:

> he(X;R) >0« HY(X;R) = 0.

> In the sequel: he(X) = he(X;F2).



Cheeger Constants of a Simplex
A,_1 = the (n — 1)-dimensional simplex on V = [n].

Claim [M-Wallach, Gromov]:
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Cheeger Constants of a Simplex

A,_1 = the (n — 1)-dimensional simplex on V = [n].

Claim [M-Wallach, Gromov]:

n

h—1(Ap-1) =

Example:
[ =UoVi s Vil = ¢
¢ = 1VO><"'><Vk_1

gl = (g31)"

k101l = (g3)**
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The Affine Overlap Property

Number of Intersecting Simplices
For A= {a1,...,an} C RX and p € R¥ et

va(p) = o C[n]: ol =k+1, pcconviai}ics}.

Theorem [Barany]:
There exists a p € R¥ such that

(k Ji 1)k (ki 1> ~ O(n").

fa(p) >
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Number of Intersecting Images
For a continuous map f : A,_1 — R¥ and p € R¥ let

v(p) = [{o € Dp_a(k) : p € F(0)}]-

Theorem [Gromov]:
There exists a p € R¥ such that

2k n
02 G (k1) ~ O




Topological Overlap and Expansion

Number of Intersecting Images
For a continuous map f : X — R¥ and p € R¥ let

ve(p) = [{o € X(k) : p € f(0)}].



Topological Overlap and Expansion

Number of Intersecting Images
For a continuous map f : X — R¥ and p € R¥ let

ve(p) = [{o € X(k) : p € f(0)}].

Expansion Condition on X
Suppose that forall 0 </ < k—1

fiy1(X)
hi(X) > e- W



Topological Overlap and Expansion

Number of Intersecting Images
For a continuous map f : X — R¥ and p € R¥ let

ve(p) = [{o € X(k) : p € f(0)}].

Expansion Condition on X
Suppose that forall 0 </ < k—1

fiy1(X)
hi(X) > e- W

Theorem [Gromov]|

There exists a § = d(k, €) such that for any continuous map
f 1 X — RX there exists a p € R* such that

Y¢(p) > 6fi(X).



Expander Complexes

Degree of a Simplex
For o € X(k —1) let deg(o) = |[{T € X(k) : 0 C T}|.
Dy—1(X) = max,ex(k-1) deg(o).



Expander Complexes

Degree of a Simplex

For o € X(k —1) let deg(o) = |[{T € X(k) : 0 C T}|.
Di—1(X) = max,ex(k—1) deg(o).

(k, d, €)-Expanders

A family of Complexes {X,}, with f5(X,;) — oo such that

Dio1(Xn) <d and  he_1(Xn) > e



Expander Complexes

Degree of a Simplex

For o € X(k —1) let deg(o) = |[{T € X(k) : 0 C T}|.
Di—1(X) = max,ex(k—1) deg(o).

(k, d, €)-Expanders

A family of Complexes {X,}, with f5(X,;) — oo such that

Dio1(Xn) <d and  he_1(Xn) > e

Random Complexes as Expanders
Y € Yi(n,p= kz'—sg") is a.a.s. a (k,log n, 1)-expander.



Expander Complexes

Degree of a Simplex

For o € X(k —1) let deg(o) = |[{T € X(k) : 0 C T}|.
Di—1(X) = max,ex(k—1) deg(o).

(k, d, €)-Expanders

A family of Complexes {X,}, with f5(X,;) — oo such that

Dio1(Xn) <d and  he_1(Xn) > e

Random Complexes as Expanders
Y € Yi(n,p= kz'—;’g") is a.a.s. a (k,log n, 1)-expander.

Problem
Do there exist (k, d, €)-expanders with k > 2 and fixed d, e ?
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Definitions

Sn = Symmetric group on [n].

(71, ..., 7k) € Sk is legal if m;(£) # m;(¢) for all £ and i # j.
A Latin Square is a legal n-tuple L = (71,...,m,) € Sp.

L, = Latin squares of order n with uniform measure.
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Latin Squares

Definitions

Sn = Symmetric group on [n].

(71, ..., 7k) € Sk is legal if m;(£) # m;(¢) for all £ and i # j.
A Latin Square is a legal n-tuple L = (71,...,m,) € Sp.

L, = Latin squares of order n with uniform measure.

The Usual Picture

L= (m1,...,7n) < TL € Mpxn([n])
To(i,mi(i) =k for 1 < i, k <n.
Example for n = 4

= (1234)

(Id, m,m, m3) T, =

T
L

NfW| [
WA= IDN
DN W
=N WD




The Complete 3-Partite Complex

Vlz{al,...,a,,}, sz{bl,...,bn}, V3:{C1,...,C,,}

To=VixVoxVs={cCV:|oNnV|<lforl<i<3}



The Complete 3-Partite Complex

Vlz{al,...,a,,}, sz{bl,...,bn}, V3:{C1,...,C,,}

To=VixVoxVs={cCV:|oNnV|<lforl<i<3}

ap aj ap
o [ ] [}
® [ ]
5 b b,
o [ ] [ ]



The Complete 3-Partite Complex

\/1:{81,...,3,,}, sz{bl,...,bn}, V3:{C1,...,C,,}

To=VixVoxVs={cCV:|oNnV|<lforl<i<3}

ap aj ap
[ ) [ ] [ )
[ ) [ ]
5 b b,
[ ) [ [ )
(5] Ck Cn
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Random Latin Squares Complexes

Multiple Latin Squares
For L= (Ly,...,Ly) € £ let Y(L9) =UL,Y(L).

The Probability Space Y(n, d)
L9 = d-tuples of Latin squares of order n with uniform measure.
V(n,d) ={Y(L9) : L9 € £} with induced measure from LJ.

Theorem (LM):
There exist € > 0, d < oo such that

lim Pr[Y € Y(n,d): hi(Y)>¢ =1.

Remark: ¢ = 10~ and d = 10 will do.
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Idea of Proof

Fix 0 < c<1andlet ¢ € CY(T,; ).

: c—small if ||[¢]l|] < cn?
95 U charge i @] > cn?

c-Small Cochains
Lower bound on expansion in terms of the spectral gap of the
vertex links.

c-Large Cochains
Expansion is obtained by means of a new large deviations bound
for the probability space £, of Latin squares.



2-Expansion and Spectral Gap

Notation

For a complex T,Sl) cYCT,let:

Y, = Ik(Y,v) = the link of v € V.

1ty = spectral gap of the n x n bipartite graph Y, .
[ =minyey fy.

d = Di(Y) = maximum edge degree in Y.



2-Expansion and Spectral Gap

Notation

For a complex T,Sl) cYCT,let:

Y, = Ik(Y,v) = the link of v € V.

1ty = spectral gap of the n x n bipartite graph Y, .

[ =minycy fy.
d = Di1(Y) = maximum edge degree in Y.

Theorem (LM):
If |[[#]]| < cn? then

13y~
e (W - §> el



Spectral Gap of Random Graphs

Random Bipartite Graphs

7= (71,...,7m4) € S? defines a graph G = G(#) by
E(G)={(i,m(i)) : 1<i<nl<j<d}cC[n?

G(n,d)= uniform probability space {G(7) : # € S¢}.



Spectral Gap of Random Graphs

Random Bipartite Graphs
7= (71,...,7m4) € S? defines a graph G = G(#) by

E(G)={(i,m(i)) : 1<i<nl<j<d}cC[n?
G(n, d)= uniform probability space {G(#) : # € S%}.

Theorem (Friedman):
For a fixed d > 100:

PriG € G(n,d) : pa(G)>d—3Vd]=1-0(n"2).



Expansion of c-Small Cochains

Links as Random Graphs
Let Y = Y(L?) be a random complex in Y(n, d).
Then Y, = Ik(Y,v) is a random graph in G(n, d).

Therefore
Priji>d—-3Vd]=1-0(n1).



Expansion of c-Small Cochains

Links as Random Graphs
Let Y = Y(L?) be a random complex in Y(n, d).
Then Y, = Ik(Y,v) is a random graph in G(n, d).
Therefore

Priji>d—-3Vd]=1-0(n1).

Corollary:
Let d > 100 and ¢ < 1073, If ||[¢]|| < cn? then

ldwell L (1—c®)i _d

el — 2 3
.- 3 (d-3vVd) d
- 2 3

> 1.
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The Random Variable f¢
£ - a family of 2-simplices of T,, || > cn>.
For a Latin square L € L, let
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Large Deviations for Latin Squares

The Random Variable f¢
£ - a family of 2-simplices of T,, |E| > cn®.
For a Latin square L € L, let

fe(L) =Y (L)N &

Then

2

> cn”.

Elfe] = %

Theorem (LM):
For all n > np(c)

PriLe £, : fo(l) <1073c2n?] < e 107,
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For [aj, bj, ck] € £ define a 0 — 1 random variable Zj on L, by
Zji(L) = 1 iff m;(j) = k. Then

fr = Z Zijk.
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Remarks on the Proof

For [aj, bj, ck] € £ define a 0 — 1 random variable Zj on L, by
Zin(L) = 1 iff m:(j) = k. Then

1
fe=> Zik.

ik

The Zjj are however far from independent and thus one cannot
apply standard Chernoff type bounds.

The actual proof uses a different approach, relying among other
things on Brégman's permanent bound and on the classical
asymptotic enumeration of Latin squares:

= (@ +:2(1)>n>"2.



Expansion of c-Large Cochains |

Expansion in T,
Theorem (Dotterrer and Kahle): hi(T,) > .
Therefore, if ¢ € C1(T,) then

E={oe€ Ty2): dip(o) # 0}

satisfies

2(ell >

€] = ldiollr, > ¢



Expansion of c-Large Cochains |

Expansion in T,
Theorem (Dotterrer and Kahle): hi(T,) > .
Therefore, if ¢ € C1(T,) then

E={oe€ Ty2): dip(o) # 0}

satisfies

€] = lldolr, > Sll[lll >

-5

Expansion in Y(L)
If L€ Ly then [[did]ly () =Y (L) NE] = fe(L).
Hence, by the large deviation bound:

PriL € Ly : [|[did]ly(r) < 6c?n?] < S

for some absolute § > 0.
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Expansion of c-Large Cochains Il

Let L9 = (Ly,...,Lg) € £9. Then

d >
lehdlly ey = 1Y (L) NE| > max fo(Ly).

It follows that
Y )
Pr|L? € L] : ||dio]ly(oy < 60| < e

Since |CY(T,; Fa)| = 23™ it follows that

n? e—(Sclc2 n? )

Prilldiolly ) < 5c?n? for some c-large ¢] < 23



Expansion of c-Large Cochains Il

Let L9 = (Ly,...,Lg) € £9. Then

ldhllyey = 1Y (L) NE| = max fe(Ly).

It follows that

Pr|L? € L3 [|ch]ly o) < 0c2n?| < e,

Since |CY(T,; Fa)| = 23™ it follows that

Prl||d1 oy < 6c%n? for some c-large ¢] < 3n? g—ddc?n®
Y(L7)

Choosing d large it follows that a.a.s. for all c-large ¢:

Hdlﬁf)Hy(Ld) 5c’n® ¢

> S
Il — 3n? 3




Homological Connectivity on Y(n, d)

Corollary:
There exists d < oo such that
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Corollary:
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Claim:
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Homological Connectivity on Y(n, d)

Corollary:
There exists d < oo such that

lim PrY € Y(n,d): Hi(Y;F2) =0] =1.

n—oo

Claim:

-3

17
lim Pr[Hy(Y (L1, Lo, L3); Fa) £ 0] > 1 — ==

n—oo

= 0.57.

Theorem (Garland): If in a 2-dimensional complex Y all vertex
links have sufficiently large spectral gaps then H;(Y;R) = 0.

Corollary: If d > 100 then Hi(Y;R) =0 a.a.s. for Y € Y(n,d).



Topological Overlap Property for Y (n, d)

Corollary:
There exist 6 > 0 and d such that Y € Y(n, d) a.a.s. satisfies the

following:
For any continuous map f : Y — R? there exists p € R? such that

vy (p) = on’.
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Open Problems

» Find explicit constructions of bounded degree expanders.
» Are Ramanujan complexes high dimensional expanders?

» The model Y(n, d) generalizes to higher dimensions.
Does the Theorem remain true there?

» Find the minimal d for which Theorem 1 holds.



