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The Graphical Cheeger Constant

Edge Cuts

For a graph G = (V ,E ) and S ⊂ V , S = V − S let

e(S ,S) = |{e ∈ E : |e ∩ S | = 1}|.
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Edge Cuts

For a graph G = (V ,E ) and S ⊂ V , S = V − S let

e(S ,S) = |{e ∈ E : |e ∩ S | = 1}|.

S S

Cheeger Constant

h(G ) = min
0<|S|≤

|V |
2

e(S ,S)

|S | .
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(d , ǫ)-Expanders

A family of graphs {Gn = (Vn,En)}n with |Vn| → ∞
with two seemingly contradicting properties:

◮ High Connectivity: h(Gn) ≥ ǫ.

◮ Sparsity: maxv degGn
(v) ≤ d .
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Expander Graphs

(d , ǫ)-Expanders

A family of graphs {Gn = (Vn,En)}n with |Vn| → ∞
with two seemingly contradicting properties:

◮ High Connectivity: h(Gn) ≥ ǫ.

◮ Sparsity: maxv degGn
(v) ≤ d .

Pinsker:
Random 3 ≤ d-regular graphs are (d , ǫ)-expanders.

Margulis:

Explicit construction of expanders.

Lubotzky-Phillips-Sarnak, Margulis:

Ramanujan Graphs - an ”optimal” family of expanders.



Spectral Gap

Laplacian Matrix

G = (V ,E ) a graph, |V | = n.

The Laplacian of G is the V × V matrix LG :

LG(u, v) =






deg(u) u = v

−1 uv ∈ E

0 otherwise.



Spectral Gap

Laplacian Matrix

G = (V ,E ) a graph, |V | = n.

The Laplacian of G is the V × V matrix LG :

LG (u, v) =






deg(u) u = v

−1 uv ∈ E

0 otherwise.

Eigenvalues of LG

0 = µ1(G ) ≤ µ2(G ) ≤ · · · ≤ µn(G ).

µ2(G ) = Spectral Gap of G .
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e(S ,S) ≥ |S ||S |
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Expansion and Spectral Gap

Theorem (Alon-Milman, Tanner):

For all ∅ 6= S $ V

e(S ,S) ≥ |S ||S |
n

µ2.

In particular

h(G ) ≥ µ2

2
.

Theorem (Alon, Dodziuk):

If G is d-regular then

h(G ) ≤
√

2dµ2.

Expanders can thus be defined using the spectral gap.
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◮ Construction of efficient communication networks.

◮ Randomization reduction in probabilistic algorithms.

◮ Construction of good error correcting (LDPC) codes.

◮ Tools in computational complexity lower bounds.



Why Expanding Graphs?

Uses of Expanders

◮ Construction of efficient communication networks.

◮ Randomization reduction in probabilistic algorithms.

◮ Construction of good error correcting (LDPC) codes.

◮ Tools in computational complexity lower bounds.

Interactions with Other Areas

◮ Expansion and Kazhdan’s property T.

◮ Expanders as spaces of maximal Euclidean distortion.

◮ Dimension expanders and representation theory.

◮ Expanders on finite simple groups.
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Three Notions of Expansion

◮ Combinatorial: via the mixing property.

◮ Spectral: via eigenvalues of the higher Laplacians.

◮ Cohomological: via the Hamming weights of coboundaries.



What are Expanding Complexes?

Three Notions of Expansion

◮ Combinatorial: via the mixing property.

◮ Spectral: via eigenvalues of the higher Laplacians.

◮ Cohomological: via the Hamming weights of coboundaries.

Cohomological Expansion

This notion is strongly tied to topology, e.g. :

◮ Linial-M-Wallach: Homology of random complexes.

◮ Gromov: The topological overlap property.

◮ Gundert-Wagner: Laplacians of random complexes.

◮ Dotterrer-Kahle: Expansion of random subcomplexes.



Simplicial Cohomology

X a simplicial complex on V , R a fixed abelian group.
i -face of σ = [v0, · · · , vk ] is σi = [v0, · · · , v̂i , · · · , vk ].
C k(X ) = k-cochains = skew-symmetric maps φ : X (k) → R .
Coboundary Operator dk : C k(X ) → C k+1(X ) given by

dkφ(σ) =
k+1∑

i=0

(−1)iφ(σi ) .
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X a simplicial complex on V , R a fixed abelian group.
i -face of σ = [v0, · · · , vk ] is σi = [v0, · · · , v̂i , · · · , vk ].
C k(X ) = k-cochains = skew-symmetric maps φ : X (k) → R .
Coboundary Operator dk : C k(X ) → C k+1(X ) given by

dkφ(σ) =
k+1∑

i=0

(−1)iφ(σi ) .

d−1 : C−1(X ) = R → C 0(X ) given by
d−1a(v) = a for a ∈ R , v ∈ V .
Z k(X ) = k-cocycles = ker(dk).
Bk(X ) = k-coboundaries = Im(dk−1).
k-th reduced cohomology group of X :

H̃
k
(X ) = H̃

k
(X ;R) = Z k(X )/Bk(X ) .



Cut of a Cochain

Cut determined by a k-cochain φ ∈ C k(X ;R):

supp(dkφ) = {τ ∈ X (k + 1) : dkφ(τ) 6= 0} .
Cut Size of φ: ‖dkφ‖ = |supp(dkφ)|.



Cut of a Cochain

Cut determined by a k-cochain φ ∈ C k(X ;R):

supp(dkφ) = {τ ∈ X (k + 1) : dkφ(τ) 6= 0} .
Cut Size of φ: ‖dkφ‖ = |supp(dkφ)|.
Example:

1 1

0

0 0

0

σ1 σ2

‖d1φ‖ = |{σ1, σ2}| = 2
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The Weight of a k-cochain φ ∈ C k(X ;R):

‖[φ]‖ = min { |supp(φ+ dk−1ψ)| : ψ ∈ C k−1(X ;R) }.



Hamming Weight of a Cochain

The Weight of a k-cochain φ ∈ C k(X ;R):

‖[φ]‖ = min { |supp(φ+ dk−1ψ)| : ψ ∈ C k−1(X ;R) }.

Example: ‖φ‖ = 3 but ‖[φ]‖ = 1

1

1 0

0 B

1 0

1 1

0 0

φ φ − d01A,Bd01A,B

0 0 11

A

1 0 0 0
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Expansion of a Complex

Expansion of a Cochain

The expansion of φ ∈ C k(X ;R) − Bk(X ;R) is

‖dkφ‖
‖[φ]‖

k-Cheeger Constant

hk(X ;R) = min

{‖dkφ‖
‖[φ]‖ : φ ∈ C k(X ;R) − Bk(X ;R)

}
.

Remarks:

◮ hk(X ;R) > 0 ⇔ H̃k(X ;R) = 0.

◮ In the sequel: hk(X ) = hk(X ; F2).



Cheeger Constants of a Simplex

∆n−1 = the (n − 1)-dimensional simplex on V = [n].

Claim [M-Wallach, Gromov]:

hk−1(∆n−1) =
n

k + 1
.



Cheeger Constants of a Simplex

∆n−1 = the (n − 1)-dimensional simplex on V = [n].

Claim [M-Wallach, Gromov]:

hk−1(∆n−1) =
n

k + 1
.

Example:

[n] = ∪k
i=0Vi , |Vi | = n

k+1

φ = 1V0×···×Vk−1

‖[φ]‖ = ( n
k+1 )k

‖dk−1φ‖ = ( n
k+1 )k+1



The Affine Overlap Property

Number of Intersecting Simplices

For A = {a1, . . . , an} ⊂ Rk and p ∈ Rk let

γA(p) = |{σ ⊂ [n] : |σ| = k + 1 , p ∈ conv{ai}i∈σ}|.



The Affine Overlap Property

Number of Intersecting Simplices

For A = {a1, . . . , an} ⊂ Rk and p ∈ Rk let

γA(p) = |{σ ⊂ [n] : |σ| = k + 1 , p ∈ conv{ai}i∈σ}|.

Theorem [Bárány]:

There exists a p ∈ Rk such that

fA(p) ≥ 1

(k + 1)k

(
n

k + 1

)
− O(nk).



The Topological Overlap Property

Number of Intersecting Images

For a continuous map f : ∆n−1 → Rk and p ∈ Rk let

γf (p) = |{σ ∈ ∆n−1(k) : p ∈ f (σ)}|.



The Topological Overlap Property

Number of Intersecting Images

For a continuous map f : ∆n−1 → Rk and p ∈ Rk let

γf (p) = |{σ ∈ ∆n−1(k) : p ∈ f (σ)}|.

Theorem [Gromov]:

There exists a p ∈ Rk such that

γf (p) ≥ 2k

(k + 1)!(k + 1)

(
n

k + 1

)
− O(nk).
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Topological Overlap and Expansion

Number of Intersecting Images

For a continuous map f : X → Rk and p ∈ Rk let

γf (p) = |{σ ∈ X (k) : p ∈ f (σ)}|.

Expansion Condition on X

Suppose that for all 0 ≤ i ≤ k − 1

hi(X ) ≥ ǫ · fi+1(X )

fi(X )
.

Theorem [Gromov]

There exists a δ = δ(k, ǫ) such that for any continuous map
f : X → Rk there exists a p ∈ Rk such that

γf (p) ≥ δfk(X ).



Expander Complexes

Degree of a Simplex

For σ ∈ X (k − 1) let deg(σ) = |{τ ∈ X (k) : σ ⊂ τ}|.
Dk−1(X ) = maxσ∈X (k−1) deg(σ).
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Expander Complexes

Degree of a Simplex

For σ ∈ X (k − 1) let deg(σ) = |{τ ∈ X (k) : σ ⊂ τ}|.
Dk−1(X ) = maxσ∈X (k−1) deg(σ).

(k, d , ǫ)-Expanders

A family of Complexes {Xn}n with f0(Xn) → ∞ such that

Dk−1(Xn) ≤ d and hk−1(Xn) ≥ ǫ.

Random Complexes as Expanders

Y ∈ Yk(n, p = k2 log n
n

) is a.a.s. a (k, log n, 1)-expander.

Problem
Do there exist (k, d , ǫ)-expanders with k ≥ 2 and fixed d , ǫ ?



Latin Squares

Definitions
Sn = Symmetric group on [n].
(π1, . . . , πk) ∈ Sk

n is legal if πi(ℓ) 6= πj(ℓ) for all ℓ and i 6= j .
A Latin Square is a legal n-tuple L = (π1, . . . , πn) ∈ Sn

n.
Ln = Latin squares of order n with uniform measure.
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Latin Squares

Definitions
Sn = Symmetric group on [n].
(π1, . . . , πk) ∈ Sk

n is legal if πi(ℓ) 6= πj(ℓ) for all ℓ and i 6= j .
A Latin Square is a legal n-tuple L = (π1, . . . , πn) ∈ Sn

n.
Ln = Latin squares of order n with uniform measure.

The Usual Picture
L = (π1, . . . , πn) ↔ TL ∈ Mn×n([n])
TL(i , πk(i)) = k for 1 ≤ i , k ≤ n.

Example for n = 4

π = (1234)

L = (Id , π, π2, π3) TL =

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1



The Complete 3-Partite Complex

V1 = {a1, . . . , an} , V2 = {b1, . . . , bn} , V3 = {c1, . . . , cn}

Tn = V1 ∗ V2 ∗ V3 = {σ ⊂ V : |σ ∩ Vi | ≤ 1 for 1 ≤ i ≤ 3}
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V1 = {a1, . . . , an} , V2 = {b1, . . . , bn} , V3 = {c1, . . . , cn}

Tn = V1 ∗ V2 ∗ V3 = {σ ⊂ V : |σ ∩ Vi | ≤ 1 for 1 ≤ i ≤ 3}

a1 ai an

b1 bj bn

c1 ck cn



The Complete 3-Partite Complex

V1 = {a1, . . . , an} , V2 = {b1, . . . , bn} , V3 = {c1, . . . , cn}

Tn = V1 ∗ V2 ∗ V3 = {σ ⊂ V : |σ ∩ Vi | ≤ 1 for 1 ≤ i ≤ 3}

a1 ai an

b1 bj bn

c1 ck cn

Tn ≃ S2 ∨ · · · ∨ S2 (n − 1)3 times



Latin Square Complexes
L = (π1, . . . , πn) ∈ Ln defines a complex Y (L) ⊂ Tn by

Y (L)(2) =
{

[ai , bj , cπi (j)] : 1 ≤ i , j ≤ n
}
.



Latin Square Complexes
L = (π1, . . . , πn) ∈ Ln defines a complex Y (L) ⊂ Tn by

Y (L)(2) =
{

[ai , bj , cπi (j)] : 1 ≤ i , j ≤ n
}
.

Example: n = 2

L =
1 2

2 1
Y (L) =

a1

c1

c2

b1

b2

a2



Latin Square Complexes
L = (π1, . . . , πn) ∈ Ln defines a complex Y (L) ⊂ Tn by

Y (L)(2) =
{

[ai , bj , cπi (j)] : 1 ≤ i , j ≤ n
}
.

Example: n = 2

L =
1 2

2 1
Y (L) =

a1

c1

c2

b1

b2

a2

Y

(
1 2

2 1

)
∪ Y

(
2 1

1 2

)
= T2
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Random Latin Squares Complexes

Multiple Latin Squares

For Ld = (L1, . . . ,Ld) ∈ Ld
n let Y (Ld) = ∪d

i=1Y (Li ).

The Probability Space Y(n, d)

Ld
n = d-tuples of Latin squares of order n with uniform measure.

Y(n, d) = {Y (Ld) : Ld ∈ Ld
n} with induced measure from Ld

n .

Theorem (LM):

There exist ǫ > 0, d <∞ such that

lim
n→∞

Pr [Y ∈ Y(n, d) : h1(Y ) > ǫ] = 1.

Remark: ǫ = 10−11 and d = 1011 will do.
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Fix 0 < c < 1 and let φ ∈ C 1(Tn; F2).

φ is

{
c − small if ‖[φ]‖ ≤ cn2

c − large if ‖[φ]‖ ≥ cn2
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Lower bound on expansion in terms of the spectral gap of the
vertex links.



Idea of Proof

Fix 0 < c < 1 and let φ ∈ C 1(Tn; F2).

φ is

{
c − small if ‖[φ]‖ ≤ cn2

c − large if ‖[φ]‖ ≥ cn2

c-Small Cochains
Lower bound on expansion in terms of the spectral gap of the
vertex links.

c-Large Cochains

Expansion is obtained by means of a new large deviations bound
for the probability space Ln of Latin squares.



2-Expansion and Spectral Gap

Notation
For a complex T

(1)
n ⊂ Y ⊂ Tn let:

Yv = lk(Y , v) = the link of v ∈ V .
µv = spectral gap of the n × n bipartite graph Yv .
µ̃ = minv∈V µv .
d = D1(Y ) = maximum edge degree in Y .



2-Expansion and Spectral Gap

Notation
For a complex T

(1)
n ⊂ Y ⊂ Tn let:

Yv = lk(Y , v) = the link of v ∈ V .
µv = spectral gap of the n × n bipartite graph Yv .
µ̃ = minv∈V µv .
d = D1(Y ) = maximum edge degree in Y .

Theorem (LM):

If ‖[φ]‖ ≤ cn2 then

‖d1φ‖ ≥
(

(1 − c1/3)µ̃

2
− d

3

)
‖[φ]‖.



Spectral Gap of Random Graphs

Random Bipartite Graphs

π̃ = (π1, . . . , πd) ∈ Sd
n defines a graph G = G (π̃) by

E (G ) = { (i , πj(i)) : 1 ≤ i ≤ n, 1 ≤ j ≤ d } ⊂ [n]2.

G(n, d)= uniform probability space {G (π̃) : π̃ ∈ Sd
n}.



Spectral Gap of Random Graphs

Random Bipartite Graphs

π̃ = (π1, . . . , πd) ∈ Sd
n defines a graph G = G (π̃) by

E (G ) = { (i , πj(i)) : 1 ≤ i ≤ n, 1 ≤ j ≤ d } ⊂ [n]2.

G(n, d)= uniform probability space {G (π̃) : π̃ ∈ Sd
n}.

Theorem (Friedman):

For a fixed d ≥ 100:

Pr [G ∈ G(n, d) : µ2(G ) > d − 3
√

d ] = 1 − O(n−2).



Expansion of c-Small Cochains

Links as Random Graphs

Let Y = Y (Ld) be a random complex in Y(n, d).
Then Yv = lk(Y , v) is a random graph in G(n, d).
Therefore

Pr [ µ̃ ≥ d − 3
√

d ] = 1 − O(n−1).



Expansion of c-Small Cochains

Links as Random Graphs

Let Y = Y (Ld) be a random complex in Y(n, d).
Then Yv = lk(Y , v) is a random graph in G(n, d).
Therefore

Pr [ µ̃ ≥ d − 3
√

d ] = 1 − O(n−1).

Corollary:

Let d ≥ 100 and c < 10−3. If ‖[φ]‖ ≤ cn2 then

‖d1φ‖
‖[φ]‖ ≥ (1 − c1/3)µ̃

2
− d

3

≥ (1 − c1/3)(d − 3
√

d)

2
− d

3
> 1.



Large Deviations for Latin Squares

The Random Variable fE

E - a family of 2-simplices of Tn, |E| ≥ cn3.
For a Latin square L ∈ Ln let

fE(L) = |Y (L) ∩ E|.

Then

E [fE ] =
|E|
n

≥ cn2.



Large Deviations for Latin Squares

The Random Variable fE

E - a family of 2-simplices of Tn, |E| ≥ cn3.
For a Latin square L ∈ Ln let

fE(L) = |Y (L) ∩ E|.

Then

E [fE ] =
|E|
n

≥ cn2.

Theorem (LM):

For all n ≥ n0(c)

Pr [L ∈ Ln : fE(L) < 10−3c2n2] < e−10−3c2n2
.



Remarks on the Proof

For [ai , bj , ck ] ∈ E define a 0 − 1 random variable Zijk on Ln by
Zijk(L) = 1 iff πi (j) = k. Then

fE =
∑

ijk

Zijk .
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Remarks on the Proof

For [ai , bj , ck ] ∈ E define a 0 − 1 random variable Zijk on Ln by
Zijk(L) = 1 iff πi (j) = k. Then

fE =
∑

ijk

Zijk .

The Zijk are however far from independent and thus one cannot
apply standard Chernoff type bounds.

The actual proof uses a different approach, relying among other
things on Brégman’s permanent bound and on the classical
asymptotic enumeration of Latin squares:

|Ln| =

(
(1 + o(1))n

e2

)n2

.



Expansion of c-Large Cochains I

Expansion in Tn

Theorem (Dotterrer and Kahle): h1(Tn) ≥ n
5 .

Therefore, if φ ∈ C 1(Tn) then

E = {σ ∈ Tn(2) : d1φ(σ) 6= 0}

satisfies

|E| = ‖d1φ‖Tn
≥ n

5
‖[φ]‖ ≥ cn3

5
.



Expansion of c-Large Cochains I

Expansion in Tn

Theorem (Dotterrer and Kahle): h1(Tn) ≥ n
5 .

Therefore, if φ ∈ C 1(Tn) then

E = {σ ∈ Tn(2) : d1φ(σ) 6= 0}

satisfies

|E| = ‖d1φ‖Tn
≥ n

5
‖[φ]‖ ≥ cn3

5
.

Expansion in Y (L)

If L ∈ Ln then ‖d1φ‖Y (L) = |Y (L) ∩ E| = fE(L).
Hence, by the large deviation bound:

Pr [L ∈ Ln : ‖d1φ‖Y (L) < δc2n2] < e−δc2n2
.

for some absolute δ > 0.
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Since |C 1(Tn; F2)| = 23n2
it follows that
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Expansion of c-Large Cochains II

Let Ld = (L1, . . . ,Ld) ∈ Ld
n . Then

‖d1φ‖Y (Ld ) = |Y (Ld) ∩ E| ≥ max
1≤i≤d

fE(Li ).

It follows that

Pr
[
Ld ∈ Ld

n : ‖d1φ‖Y (Ld ) < δc2n2
]
< e−δdc2n2

.

Since |C 1(Tn; F2)| = 23n2
it follows that

Pr [‖d1φ‖Y (Ld ) < δc2n2 for some c-large φ] < 23n2
e−δdc2n2

.

Choosing d large it follows that a.a.s. for all c-large φ:

‖d1φ‖Y (Ld )

‖φ‖ ≥ δc2n2

3n2
=
δc2

3
.



Homological Connectivity on Y(n, d)

Corollary:

There exists d <∞ such that

lim
n→∞

Pr [Y ∈ Y(n, d) : H1(Y ; F2) = 0] = 1.
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= 0.57.



Homological Connectivity on Y(n, d)

Corollary:

There exists d <∞ such that

lim
n→∞

Pr [Y ∈ Y(n, d) : H1(Y ; F2) = 0] = 1.

Claim:

lim
n→∞

Pr [H1(Y (L1,L2,L3); F2) 6= 0] ≥ 1 − 17e−3

2

.
= 0.57.

Theorem (Garland): If in a 2-dimensional complex Y all vertex
links have sufficiently large spectral gaps then H1(Y ; R) = 0.

Corollary: If d ≥ 100 then H1(Y ; R) = 0 a.a.s. for Y ∈ Y(n, d).



Topological Overlap Property for Y(n, d)

Corollary:

There exist δ > 0 and d such that Y ∈ Y(n, d) a.a.s. satisfies the
following:
For any continuous map f : Y → R2 there exists p ∈ R2 such that

γY (p) ≥ δn2.



Open Problems



Open Problems

◮ Find explicit constructions of bounded degree expanders.



Open Problems

◮ Find explicit constructions of bounded degree expanders.

◮ Are Ramanujan complexes high dimensional expanders?



Open Problems

◮ Find explicit constructions of bounded degree expanders.

◮ Are Ramanujan complexes high dimensional expanders?

◮ The model Y(n, d) generalizes to higher dimensions.
Does the Theorem remain true there?



Open Problems

◮ Find explicit constructions of bounded degree expanders.

◮ Are Ramanujan complexes high dimensional expanders?

◮ The model Y(n, d) generalizes to higher dimensions.
Does the Theorem remain true there?

◮ Find the minimal d for which Theorem 1 holds.


