Spaces of directed paths as simplicial complexes

Martin Raussen

Department of Mathematical Sciences, Aalborg University, Denmark

Applied and Computational Algebraic Topology ALTA, Bremen July 16, 2013

Table of Contents

Agenda

Examples: State spaces and associated path spaces in

Higher Dimensional Automata (HDA)

Motivation: from Concurrency Theory

Simplest case: State spaces and path spaces related to linear

PV-programs

Tool: Cutting up path spaces into contractible

subspaces

Homotopy type of path space described by a matrix poset category and realized by a prodsimplicial complex

Algorithmics: Detecting dead and alive subcomplexes/matrices

Outlook: How to handle general HDA – with directed loops

Case: Directed loops on a punctured torus (joint with

Table of Contents

Agenda

Examples: State spaces and associated path spaces in

Higher Dimensional Automata (HDA)

Motivation: from Concurrency Theory

Simplest case: State spaces and path spaces related to linear

PV-programs

Tool: Cutting up path spaces into contractible

subspaces

Homotopy type of path space described by a matrix poset category and realized by a prodsimplicial complex

Algorithmics: Detecting dead and alive subcomplexes/matrices

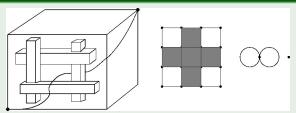
Outlook: How to handle general HDA – with directed loops

Case: Directed loops on a punctured torus (joint with K. Ziemiański, Warsaw)

Intro: State space, directed paths and trace space

Problem: How are they related?

Example 1: State space and trace space for a semaphore HDA



State space:

a 3D cube $\vec{l}^3 \setminus F$ minus 4 box obstructions pairwise connected

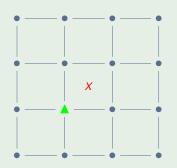
Path space model contained in torus $(\partial \Delta^2)^2$ – homotopy equivalent to a wedge of two circles and a point: $(S^1 \vee S^1) \sqcup *$

Analogy in standard algebraic topology

Relation between space X and loop space ΩX .

Intro: State space and trace space with loops

Example 2: Punctured torus



State space: Punctured torus X and branch point \triangle : 2D torus $\partial \Delta^2 \times \partial \Delta^2$ with a rectangle $\Delta^1 \times \Delta^1$ removed

Path space model:

Discrete infinite space of dimension 0 corresponding to $\{r, u\}^*$.

Question: Path space for a punctured torus in higher dimensions?

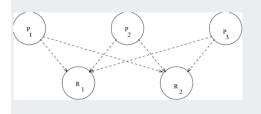
Joint work with K. Ziemiański.

Motivation: Concurrency

Semaphores: A simple model for mutual exclusion

(Mutual) Exclusion

occurs, when n processes P_i compete for m resources R_j .



Only *k* processes can be served at any given time.

Semaphores: A simple model for (mutual) exclusion

Semantics: A processor has to lock a resource and to

relinquish the lock later on!

Description/abstraction: $P_i : \dots PR_j \dots VR_j \dots$ (E.W. Dijkstra)

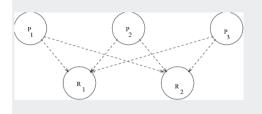
P: probeer; V: verhoog

Motivation: Concurrency

Semaphores: A simple model for mutual exclusion

(Mutual) Exclusion

occurs, when n processes P_i compete for m resources R_j .



Only *k* processes can be served at any given time.

Semaphores: A simple model for (mutual) exclusion

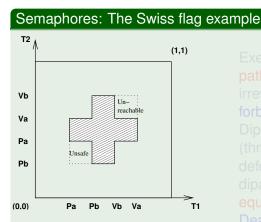
Semantics: A processor has to lock a resource and to

relinquish the lock later on!

Description/abstraction: $P_i : \dots PR_j \dots VR_j \dots$ (E.W. Dijkstra)

P: probeer; V: verhoog

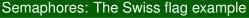
A geometric model: Schedules in "progress graphs"

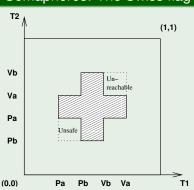


PV-diagram from

 $P_1: P_a P_b V_b V_a$ $P_2: P_b P_a V_a V_b$

A geometric model: Schedules in "progress graphs"





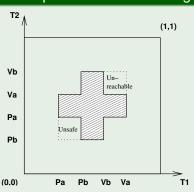
PV-diagram from

 $P_1: P_a P_b V_b V_a$

 $P_2: P_b P_a V_a V_b$

Executions are directed paths – since time flow is irreversible - avoiding a forbidden region (shaded). Dipaths that are dihomotopic (through a 1-parameter deformation consisting of dipaths) correspond to equivalent executions.

A geometric model: Schedules in "progress graphs"



PV-diagram from

 $P_1: P_a P_b V_b V_a$ $P_2: P_b P_a V_a V_b$ Executions are directed paths – since time flow is irreversible - avoiding a forbidden region (shaded). Dipaths that are dihomotopic (through a 1-parameter deformation consisting of dipaths) correspond to equivalent executions. Deadlocks, unsafe and unreachable regions may occur.

Simple Higher Dimensional Automata

Semaphore models

The state space

A linear PV-program is modeled as the complement of a forbidden region *F* consisting of a number of holes in an *n*-cube:

- Hole = isothetic hyperrectangle $\mathbf{R}^i =]\mathbf{a}_1^i, \mathbf{b}_1^i[\times \cdots \times]\mathbf{a}_n^i, \mathbf{b}_n^i[\subset I^n, 1 \le i \le I$: with minimal vertex \mathbf{a}^i and maximal vertex \mathbf{b}^i .
- State space $X = \vec{I}^n \setminus F$, $F = \bigcup_{i=1}^I R^i$ X inherits a partial order from \vec{I}^n . d-paths are order preserving.

More general concurrent programs → HDA

Higher Dimensional Automata (HDA, V. Pratt; 1990):

- Cubical complexes: like simplicial complexes, with (partially ordered) hypercubes instead of simplices as building blocks.^a
- d-paths are order preserving.

^aWe tacitly suppress labels

Simple Higher Dimensional Automata

Semaphore models

The state space

A linear PV-program is modeled as the complement of a forbidden region *F* consisting of a number of holes in an *n*-cube:

- Hole = isothetic hyperrectangle $\mathbf{R}^i =]\mathbf{a}_1^i, \mathbf{b}_1^i[\times \cdots \times]\mathbf{a}_n^i, \mathbf{b}_n^i[\subset I^n, 1 \le i \le I$: with minimal vertex \mathbf{a}^i and maximal vertex \mathbf{b}^i .
- State space $X = \vec{I}^n \setminus F$, $F = \bigcup_{i=1}^I R^i$ X inherits a partial order from \vec{I}^n . d-paths are order preserving.

More general concurrent programs → HDA

Higher Dimensional Automata (HDA, V. Pratt; 1990):

- Cubical complexes: like simplicial complexes, with (partially ordered) hypercubes instead of simplices as building blocks.^a
- d-paths are order preserving.

^aWe tacitly suppress labels

A general framework. Aims.

Definition

- X a d-space^a, $a, b \in X$. $p: \overrightarrow{l} \to X$ a d-path in X (continuous and "order-preserving") from a to b.
- $\vec{P}(X)(a,b) = \{p : \vec{I} \to X | p(0) = a, p(b) = 1, p \text{ a d-path}\}.$ Trace space $\vec{T}(X)(a,b) = \vec{P}(X)(a,b)$ modulo increasing reparametrizations.
- A dihomotopy in P(X)(a, b) is a map $H : I \times I \to X$ such that $H_t \in P(X)(a, b)$, $t \in I$; ie a path in P(X)(a, b).

Aim:

Description of the homotopy type of $\vec{P}(X)(a,b)$ as explicit finite dimensional (prod-)simplicial complex.

^aMarco Grandis

A general framework. Aims.

Definition

- X a d-space^a, $a, b \in X$. $p: \vec{l} \to X$ a d-path in X (continuous and "order-preserving") from a to b.
- $\vec{P}(X)(a,b) = \{\vec{p}: \vec{T} \to X | \ p(0) = a, p(b) = 1, p \text{ a d-path}\}.$ Trace space $\vec{T}(X)(a,b) = \vec{P}(X)(a,b)$ modulo increasing reparametrizations. In most cases: $\vec{P}(X)(a,b) \simeq \vec{T}(X)(a,b)$.
- A dihomotopy in $\vec{P}(X)(a,b)$ is a map $H: \vec{l} \times I \to X$ such that $H_t \in \vec{P}(X)(a,b)$, $t \in I$; ie a path in $\vec{P}(X)(a,b)$.

Aim:

Description of the homotopy type of $\tilde{P}(X)(a,b)$ as explicit finite dimensional (prod-)simplicial complex.

^aMarco Grandis

A general framework. Aims.

Definition

- X a d-space^a, $a, b \in X$. $p: \vec{l} \to X$ a d-path in X (continuous and "order-preserving") from a to b.
- $\vec{P}(X)(a,b) = \{p: \vec{I} \to X | p(0) = a, p(b) = 1, p \text{ a d-path}\}.$ Trace space $\vec{T}(X)(a,b) = \vec{P}(X)(a,b)$ modulo increasing reparametrizations. In most cases: $\vec{P}(X)(a,b) \simeq \vec{T}(X)(a,b).$
- A dihomotopy in $\vec{P}(X)(a,b)$ is a map $H: \vec{l} \times I \to X$ such that $H_t \in \vec{P}(X)(a,b)$, $t \in I$; ie a path in $\vec{P}(X)(a,b)$.

Aim:

Description of the homotopy type of $\vec{P}(X)(a,b)$ as explicit finite dimensional (prod-)simplicial complex.

^aMarco Grandis

A general framework. Aims.

Definition

- X a d-space^a, a, b ∈ X.
 p: I→ X a d-path in X (continuous and "order-preserving") from a to b.
- $\vec{P}(X)(a,b) = \{p : \vec{I} \to X | p(0) = a, p(b) = 1, p \text{ a d-path}\}.$ Trace space $\vec{T}(X)(a,b) = \vec{P}(X)(a,b)$ modulo increasing reparametrizations. In most cases: $\vec{P}(X)(a,b) \simeq \vec{T}(X)(a,b).$
- A dihomotopy in $\vec{P}(X)(a,b)$ is a map $H: \vec{I} \times I \to X$ such that $H_t \in \vec{P}(X)(a,b)$, $t \in I$; ie a path in $\vec{P}(X)(a,b)$.

Aim:

Description of the homotopy type of $\vec{P}(X)(a,b)$ as explicit finite dimensional (prod-)simplicial complex.

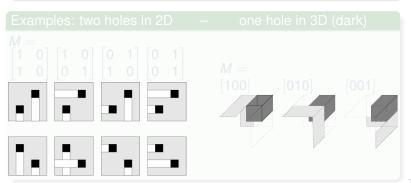
^aMarco Grandis

Tool: Subspaces of state space X and of $\vec{P}(X)(\mathbf{0}, \mathbf{1})$

 $X = \vec{I}^n \setminus F$, $F = \bigcup_{i=1}^I R^i$; $R^i = [\mathbf{a}^i, \mathbf{b}^i]$; $\mathbf{0}$, $\mathbf{1}$ the two corners in I^n .

Definition

- **1** $X_{ij} = \{x \in X | x \le \mathbf{b}^i \Rightarrow x_j \le a_j^i\} direction$ **j**restricted at hole**i**
- **2** *M* a binary $I \times n$ -matrix: $X_M = \bigcap_{m_{ij}=1} X_{ij} Which directions are restricted at which hole?$

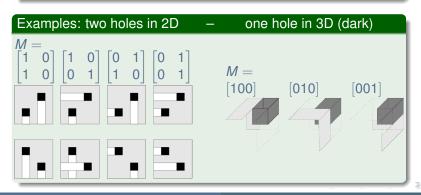


Tool: Subspaces of state space X and of $\vec{P}(X)(\mathbf{0}, \mathbf{1})$

 $X = \vec{l}^n \setminus F$, $F = \bigcup_{i=1}^l R^i$; $R^i = [\mathbf{a}^i, \mathbf{b}^i]$; **0**, **1** the two corners in I^n .

Definition

- **1** $X_{ij} = \{x \in X | x \le \mathbf{b}^i \Rightarrow x_j \le a_j^i\} direction$ **j**restricted at hole**i**
- **2** *M* a binary $I \times n$ -matrix: $X_M = \bigcap_{m_{ij}=1} X_{ij} Which directions are restricted at which hole?$



Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrix posets

 $M_{l,n}$ poset (\leq) of binary $l \times n$ -matrices $M_{l,n}^{R,*}$ no row vector is the zero vector – every hole obstructed in at least one direction

A cover by contractible subspaces

Γheorem

$$\vec{P}(X)(\mathbf{0},\mathbf{1}) = \bigcup_{M \in M^{B,*}} \vec{P}(X_M)(\mathbf{0},\mathbf{1}).$$

- 2 Every path space $\tilde{P}(X_M)(\mathbf{0},\mathbf{1}), M \in M_{l,n}^{R,*}$, is empty or contractible. Which is which? Deadl
- New: Modification leads to fewer and smaller "patches" with fewer intersections!

Proof

(2) Subspaces X_M , $M \in M_{l,n}^{R,*}$ are closed under $\vee = l.u.b.$

Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrix posets

 $M_{l,n}$ poset (\leq) of binary $l \times n$ -matrices $M_{l,n}^{R,*}$ no row vector is the zero vector – every hole obstructed in at least one direction

A cover by contractible subspaces

Theorem

0

$$\vec{P}(X)(\boldsymbol{0},\boldsymbol{1}) = \bigcup_{M \in M_{l,n}^{R,*}} \vec{P}(X_M)(\boldsymbol{0},\boldsymbol{1}).$$

- ② Every path space $\vec{P}(X_M)(\mathbf{0},\mathbf{1}), M \in M_{l,n}^{R,*}$, is empty or contractible. Which is which? Deadlocks!
- New: Modification leads to fewer and smaller "patches"
 with fewer intersections!

Proof.

(2) Subspaces X_M , $M \in M_{l,n}^{\mathbf{R},*}$ are closed under $\vee = 1.u.b.$

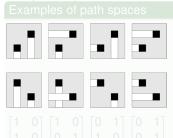
First examples

Combinatorics poset category $C(X)(0,1) \subseteq M_{l,n}^{R,*} \subseteq M_{l,n}$ $M \in C(X)(0,1)$ "alive"

Topology: prodsimplicial complex $T(X)(\mathbf{0},\mathbf{1}) \subseteq (\Delta^{n-1})^I$ $\Delta_M = \Delta_{m_1} \times \cdots \times \Delta_{m_l} \subseteq T(X)(\mathbf{0},\mathbf{1})$ – one simplex Δ for every hole

$$\Leftrightarrow \vec{P}(X_M)(\mathbf{0},\mathbf{1}) \neq \emptyset.$$

New: Modified definitions gives rise to a "smaller" simplicial complex, in particular of far lower dimension!



•
$$T(X_1)(0,1) = (\partial \Delta^1)^2$$

= $4*$

•
$$T(X_2)(0,1) = 3* -$$
 deadlock!

$$\supset \mathcal{C}(X)(\mathbf{0},\mathbf{1})$$

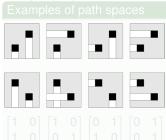
First examples

Combinatorics poset category $\mathcal{C}(X)(\mathbf{0},\mathbf{1})\subseteq M_{l,n}^{R,*}\subseteq M_{l,n}$ $M\in\mathcal{C}(X)(\mathbf{0},\mathbf{1})$ "alive"

Topology: prodsimplicial complex $\mathbf{T}(X)(\mathbf{0},\mathbf{1})\subseteq (\Delta^{n-1})^I$ $\Delta_M=\Delta_{m_1}\times\cdots\times\Delta_{m_l}\subseteq \mathbf{T}(X)(\mathbf{0},\mathbf{1})$ – one simplex Δ_{m_i} for every hole

$$\Leftrightarrow \vec{P}(X_M)(\mathbf{0},\mathbf{1}) \neq \emptyset.$$

New: Modified definitions gives rise to a "smaller" simplicial complex, in particular of far lower dimension!



•
$$T(X_1)(0,1) = (\partial \Delta^1)^2$$

= $4*$

•
$$T(X_2)(0,1) = 3* -$$
 deadlock!

$$\supset \mathcal{C}(X)(\mathbf{0},\mathbf{1})$$

First examples

Combinatorics poset category $\mathcal{C}(X)(\mathbf{0},\mathbf{1})\subseteq M_{l,n}^{R,*}\subseteq M_{l,n}$ $M\in\mathcal{C}(X)(\mathbf{0},\mathbf{1})$ "alive"

Topology: prodsimplicial complex $\mathbf{T}(X)(\mathbf{0},\mathbf{1})\subseteq (\Delta^{n-1})^I$ $\Delta_M=\Delta_{m_1}\times\cdots\times\Delta_{m_l}\subseteq \mathbf{T}(X)(\mathbf{0},\mathbf{1})$ – one simplex Δ_{m_i} for every hole

$$\Leftrightarrow \vec{P}(X_M)(\mathbf{0},\mathbf{1}) \neq \emptyset.$$

New: Modified definitions gives rise to a "smaller" simplicial complex, in particular of far lower dimension!

•
$$T(X_1)(0,1) = (\partial \Delta^1)^2$$

= $4*$

•
$$T(X_2)(0,1) = 3* -$$
 deadlock!

 $\supset \mathcal{C}(X)(\mathbf{0},\mathbf{1})$

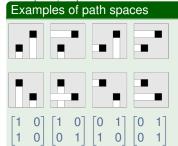
First examples

Combinatorics poset category $\mathcal{C}(X)(\mathbf{0},\mathbf{1})\subseteq M_{l,n}^{R,*}\subseteq M_{l,n}$ $M\in\mathcal{C}(X)(\mathbf{0},\mathbf{1})$ "alive"

Topology: prodsimplicial complex $\mathbf{T}(X)(\mathbf{0},\mathbf{1})\subseteq (\Delta^{n-1})^I$ $\Delta_M=\Delta_{m_1}\times\cdots\times\Delta_{m_l}\subseteq \mathbf{T}(X)(\mathbf{0},\mathbf{1})$ – one simplex Δ_{m_i} for every hole

$$\Leftrightarrow \vec{P}(X_M)(\mathbf{0},\mathbf{1}) \neq \emptyset.$$

New: Modified definitions gives rise to a "smaller" simplicial complex, in particular of far lower dimension!



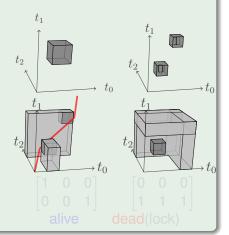
- $T(X_1)(0,1) = (\partial \Delta^1)^2$ = 4*
- $T(X_2)(0,1) = 3* -$ deadlock!

$$\supset \mathcal{C}(X)(\mathbf{0},\mathbf{1})$$

Further examples

State spaces, "alive" matrices and path spaces

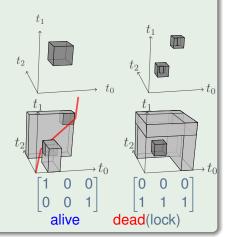
- - $C(X)(0,1) = M_{1,n}^{R,*} \setminus \{[1,\ldots,1]\}.$
 - $T(X)(0,1) = \partial \Delta^{n-1} \simeq S^{n-2}$.
- $2 X = \vec{I}^n \setminus (\vec{J}_0^n \cup \vec{J}_1^n)$
 - $C(X)(\mathbf{0},\mathbf{1}) = M_{2,n}^{R,*} \setminus \text{matrices}$ with a
 - [1, ..., 1]-row.
 - $T(X)(0,1) \simeq S^{n-2} \times S^{n-2}$



Further examples

State spaces, "alive" matrices and path spaces

- - $C(X)(0,1) = M_{1,n}^{R,*} \setminus \{[1,\ldots,1]\}.$
 - $T(X)(0,1) = \partial \Delta^{n-1} \simeq S^{n-2}$.
- $2 X = \vec{I}^n \setminus (\vec{J}_0^n \cup \vec{J}_1^n)$
 - $C(X)(\mathbf{0},\mathbf{1}) = M_{2,n}^{R,*} \setminus \text{matrices}$ with a
 - $[1, \ldots, 1]$ -row.
 - $T(X)(0,1) \simeq S^{n-2} \times S^{n-2}$



Homotopy equivalence between path space $\vec{P}(X)(\mathbf{0}, \mathbf{1})$ and prodsimplicial complex $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

Theorem (A variant of the nerve lemma)

$$\vec{P}(X)(\mathbf{0},\mathbf{1}) \simeq \mathbf{T}(X)(\mathbf{0},\mathbf{1}) \simeq \Delta C(X)(\mathbf{0},\mathbf{1}).$$

Proof.

- Functors $\mathcal{D}, \mathcal{E}, \mathcal{T}: \mathcal{C}(X)(\mathbf{0},\mathbf{1})^{(\mathsf{op})} \to \mathsf{Top}:$ $\mathcal{D}(M) = \vec{P}(X_M)(\mathbf{0},\mathbf{1}),$ $\mathcal{E}(M) = \Delta_M,$ $\mathcal{T}(M) = *$
- colim $\mathcal{D} = \tilde{P}(X)(\mathbf{0}, \mathbf{1})$, colim $\mathcal{E} = \mathbf{T}(X)(\mathbf{0}, \mathbf{1})$, hocolim $\mathcal{T} = \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
- The trivial natural transformations $\mathcal{D} \Rightarrow \mathcal{T}$, $\mathcal{E} \Rightarrow \mathcal{T}$ yield: hocolim $\mathcal{D} \simeq \operatorname{hocolim} \mathcal{T}^* \simeq \operatorname{hocolim} \mathcal{T} \simeq \operatorname{hocolim} \mathcal{E}$.
- Segal's projection lemma: hocolim $\mathcal{D} \simeq \operatorname{colim} \mathcal{D}$, hocolim $\mathcal{E} \simeq \operatorname{colim} \mathcal{E}$

Homotopy equivalence between path space $\vec{P}(X)(\mathbf{0},\mathbf{1})$ and prodsimplicial complex $\mathbf{T}(X)(\mathbf{0},\mathbf{1})$

Theorem (A variant of the nerve lemma)

$$\vec{P}(X)(\mathbf{0},\mathbf{1}) \simeq \mathbf{T}(X)(\mathbf{0},\mathbf{1}) \simeq \Delta C(X)(\mathbf{0},\mathbf{1}).$$

Proof.

- $\begin{array}{l} \bullet \ \, \text{Functors} \ \, \mathcal{D}, \mathcal{E}, \mathcal{T}: \mathcal{C}(X)(\textbf{0},\textbf{1})^{(\text{Op})} \to \textbf{Top} \text{:} \\ \mathcal{D}(M) = \vec{P}(X_M)(\textbf{0},\textbf{1}), \\ \mathcal{E}(M) = \Delta_M, \\ \mathcal{T}(M) = * \end{array}$
- colim $\mathcal{D} = \vec{P}(X)(\mathbf{0}, \mathbf{1})$, colim $\mathcal{E} = \mathbf{T}(X)(\mathbf{0}, \mathbf{1})$, hocolim $\mathcal{T} = \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
- The trivial natural transformations $\mathcal{D}\Rightarrow\mathcal{T}$, $\mathcal{E}\Rightarrow\mathcal{T}$ yield: hocolim $\mathcal{D}\simeq \operatorname{hocolim}\mathcal{T}^*\simeq \operatorname{hocolim}\mathcal{T}\simeq \operatorname{hocolim}\mathcal{E}$.
- Segal's projection lemma: hocolim $\mathcal{D} \simeq \operatorname{colim} \mathcal{D}$, hocolim $\mathcal{E} \simeq \operatorname{colim} \mathcal{E}$

Homotopy equivalence between path space $\vec{P}(X)(\mathbf{0}, \mathbf{1})$ and prodsimplicial complex $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

Theorem (A variant of the nerve lemma)

$$\vec{P}(X)(\mathbf{0},\mathbf{1}) \simeq \mathbf{T}(X)(\mathbf{0},\mathbf{1}) \simeq \Delta C(X)(\mathbf{0},\mathbf{1}).$$

Proof.

- $\begin{array}{l} \bullet \ \ \text{Functors} \ \mathcal{D}, \mathcal{E}, \mathcal{T} : \mathcal{C}(X)(\textbf{0},\textbf{1})^{(\text{op})} \to \textbf{Top} \text{:} \\ \mathcal{D}(M) = \vec{P}(X_M)(\textbf{0},\textbf{1}), \\ \mathcal{E}(M) = \Delta_M, \\ \mathcal{T}(M) = * \end{array}$
- colim $\mathcal{D} = \vec{P}(X)(\mathbf{0}, \mathbf{1})$, colim $\mathcal{E} = \mathbf{T}(X)(\mathbf{0}, \mathbf{1})$, hocolim $\mathcal{T} = \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
- The trivial natural transformations $\mathcal{D}\Rightarrow\mathcal{T}$, $\mathcal{E}\Rightarrow\mathcal{T}$ yield: hocolim $\mathcal{D}\simeq \operatorname{hocolim}\mathcal{T}^*\simeq \operatorname{hocolim}\mathcal{T}\simeq \operatorname{hocolim}\mathcal{E}$.
- Segal's projection lemma: hocolim $\mathcal{D} \simeq \operatorname{colim} \mathcal{D}$, hocolim $\mathcal{E} \simeq \operatorname{colim} \mathcal{E}$.

Detection of dead and alive matrices & subcomplexes

An algorithm starts with deadlocks and unsafe regions!

Allow less = forbid more!

Remove extended hyperrectangles R_i^i

$$:= [0, b_1^i[\times \cdots \times [0, b_{j-1}^i[\times]a_j^i, 1] \times [0, b_{j+1}^i[\times \cdots \times [0, b_n^i[\cap R^i]] \times [0, b_n^i])$$

$$X_M = X \setminus \bigcup_{m_{ij}=1} R_j^i$$
.

New: Further extension of the R_j^i "covering" far more obstruction hyperrectangles.

Theorem

The following are equivalent:

- 2 There is a "dead" matrix $N \leq M$, $N \in M_{l,n}^{C,u}$ such that

 $\bigcap_{n_{j}=1} R_{j}^{j} \neq \emptyset$ – giving rise to a deadlock unavoidable from $\mathbf{0}$ i.e. $T(X_{k})(\mathbf{0},\mathbf{1}) = \emptyset$

M^{C,u}: every column a unit vector – every direction

Detection of dead and alive matrices & subcomplexes

An algorithm starts with deadlocks and unsafe regions!

Allow less = forbid more!

Remove extended hyperrectangles R_i^i

$$:= [0, b_1^i[\times \cdots \times [0, b_{i-1}^i[\times]a_i^j, 1] \times [0, b_{i+1}^i[\times \cdots \times [0, b_n^i[\cap R^i]] \times [0, b_n^i] \times [0, b_n^i] \times [0, b_n^i[\cap R^i]] \times [0, b_n^i[\cap R^i] \times [0, b_n^i] \times [0, b_n^i[\cap R^i]] \times$$

$$X_M = X \setminus \bigcup_{m_{ij}=1} R_j^i$$
.

New: Further extension of the R_j^i "covering" far more obstruction hyperrectangles.

Theorem

The following are equivalent:

- **2** There is a "dead" matrix $N \leq M$, $N \in M_{l,n}^{C,u}$ such that

 $\bigcap_{n_{ij}=1} R_{j}^{i} \neq \emptyset$ – giving rise to a **deadlock** unavoidable from 0, i.e., $T(X_{N})(0,1) = \emptyset$.

 $M_{l,n}^{C,u}$: every column a unit vector – every direction obstructed once.

Questions answered by homology calculations using $\mathbf{T}(X)(\mathbf{0},\mathbf{1})$

Questions

- Is $\vec{P}(X)(0,1)$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected?
 Other topological properties?

- Implementation of T(X)(0, 1) in ALCOOL at CEA/LIX-lab.: Goubault, Haucourt, Mimram
- The prodsimplicial structure on C(X)(0,1) ↔ T(X)(0,1) leads to an associated chain complex of vector spaces over a field.
- Use fast algorithms (eg Mrozek's CrHom etc) to calculate the homology groups of these chain complexes even for quite big complexes; M. Juda (Krakow).
- Number of path-components: rkH₀(T(X)(0,1)).
 For path-components alone, there are fast "discrete" methods, that also yield representatives in each path component (ALCOOL).

Questions answered by homology calculations using $\mathbf{T}(X)(\mathbf{0},\mathbf{1})$

Questions

- Is $\vec{P}(X)(0,1)$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected?
 Other topological properties?

- Implementation of T(X)(0,1) in ALCOOL at CEA/LIX-lab.: Goubault, Haucourt, Mimram
- The prodsimplicial structure on C(X)(0,1) ↔ T(X)(0,1) leads to an associated chain complex of vector spaces over a field.
- Use fast algorithms (eg Mrozek's CrHom etc) to calculate the homology groups of these chain complexes even for quite big complexes: M. Juda (Krakow).
- Number of path-components: rkH₀(T(X)(0,1)).
 For path-components alone, there are fast "discrete" methods, that also yield representatives in each path component (ALCOOL).

Questions answered by homology calculations using T(X)(0,1)

Questions

- Is $\vec{P}(X)(0,1)$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected?
 Other topological properties?

- Implementation of $\mathbf{T}(X)(\mathbf{0},\mathbf{1})$ in ALCOOL at CEA/LIX-lab.: Goubault, Haucourt, Mimram
- The prodsimplicial structure on C(X)(0,1) ↔ T(X)(0,1) leads to an associated chain complex of vector spaces over a field.
- Use fast algorithms (eg Mrozek's CrHom etc) to calculate the homology groups of these chain complexes even for quite big complexes: M. Juda (Krakow).
- Number of path-components: rkH₀(T(X)(0,1)).
 For path-components alone, there are fast "discrete" methods, that also yield representatives in each path component (ALCOOL).

Questions answered by homology calculations using T(X)(0,1)

Questions

- Is $\vec{P}(X)(0,1)$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected?
 Other topological properties?

- Implementation of $\mathbf{T}(X)(\mathbf{0},\mathbf{1})$ in ALCOOL at CEA/LIX-lab.: Goubault, Haucourt, Mimram
- The prodsimplicial structure on C(X)(0,1) ↔ T(X)(0,1) leads to an associated chain complex of vector spaces over a field.
- Use fast algorithms (eg Mrozek's CrHom etc) to calculate the homology groups of these chain complexes even for quite big complexes: M. Juda (Krakow).
- Number of path-components: rkH₀(T(X)(0,1)).
 For path-components alone, there are fast "discrete" methods, that also yield representatives in each path component (ALCOOL).

Open problem: Huge complexes – complexity

Huge prodsimplicial complexes

I obstructions, n processors:

T(X)(0,1) is a subcomplex of $(\partial \Delta^{n-1})^{l}$:

potentially a huge high-dimensional complex.

Possible antidotes - new

- $\bullet \ \tilde{a}_{i}^{i} :== \max\{-1, a_{i}^{i'} | \ a_{i}^{i'} < a_{i}^{i}, \mathbf{b}_{i}^{i} \leq \mathbf{b}_{i}^{i'}\}.$ Replace X_{ii} by $Y_{ij} := \{ \mathbf{x} \in X | (\mathbf{x} \leq \mathbf{b}^i \Rightarrow x_i \leq a_i^i) \land (x_i \leq \tilde{a}_i^i \Rightarrow \mathbf{x}_{\hat{i}} \leq \mathbf{b}_{\hat{i}}^i) \}$ Complements S_{ij} of Y_{ij} are unions of hyperrectangles. • Vertices of s. cx.: Collections S of S_{ij} such that
- - $F = \bigcup_i R^i \subset \bigcup_{S_{ii} \in \mathcal{S}} S_{ij}$;
 - Every $R^{i'}$ is contained in exactly one $S_{ii} \in S$;
 - $\vec{P}(\vec{I}^n \setminus \bigcup_{S_{ii} \in \mathcal{S}} S_{ij})(\mathbf{0}, \mathbf{1}) \neq \emptyset$.

Recursive generation of vertices and s. cx.

• Observation: Two intersecting obstructions (in I^n) can at most contribute to the diagonal $\partial \Delta^{n-1} \hookrightarrow \partial \Delta^{n-1} \times \partial \Delta^{n-1}$. Similar for a chain of intersecting obstructions.

Open problems: Variation of end points

Conncection to MD persistence?

Components?!

- So far: $\vec{T}(X)(\mathbf{0},\mathbf{1})$ fixed end points.
- Now: Variation of $\vec{T}(X)(\mathbf{a}, \mathbf{b})$ of start and end point, giving rise to filtrations.
- At which thresholds do homotopy types change?
- How to cut up X × X into components so that the homotopy type of trace spaces with end point pair in a component is invariant?
- Birth and death of homology classes?
- Compare with multidimensional persistence (Carlsson, Zomorodian).

Case: d-paths on a punctured torus

with directed loops!

Punctured torus and *n*-space

n-torus
$$T^n = \mathbf{R}^n/\mathbf{z}^n$$
. forbidden region $F^n = ([\frac{1}{4}, \frac{3}{4}]^n + \mathbf{Z}^n)/\mathbf{z}^n \subset T^n$. punctured torus $Q^n = T^n \setminus F^n \simeq T^n_{(\mathbf{n}-\mathbf{1})}$ (skel.) punctured \mathbf{n} -space $\tilde{Q}^n = \mathbf{R}^n \setminus ([\frac{1}{4}, \frac{3}{4}]^n + \mathbf{Z}^n) \simeq \mathbf{R}^n_{(\mathbf{n}-\mathbf{1})}$

with d-paths via quotient map $\mathbf{R}^n \downarrow T^n$.

Aim: Describe the homotopy type of loops $\vec{P}(Q) = \vec{P}(Q)(\mathbf{0}, \mathbf{0})$

 $\vec{P}(Q) \hookrightarrow \Omega Q(\mathbf{0}, \mathbf{0}) \leadsto \text{disjoint union } \vec{P}(Q) = \bigsqcup_{\mathbf{k} \geq \mathbf{0}} \vec{P}(\mathbf{k})(Q)$ with multiindex = multidegree $\mathbf{k} = (k_1, \dots, k_n) \in \mathbf{Z}_+^n, k_i \geq 0$. $\vec{P}(\mathbf{k})(Q) \cong \vec{P}(\tilde{Q}^n)(\mathbf{0}, \mathbf{k}) =: Z(\mathbf{k})$.

Case: d-paths on a punctured torus

with directed loops!

Punctured torus and *n*-space

n-torus
$$T^n = \mathbf{R}^n/\mathbf{z}^n$$
. forbidden region $F^n = (\lfloor \frac{1}{4}, \frac{3}{4} \rfloor^n + \mathbf{Z}^n)/\mathbf{z}^n \subset T^n$. punctured torus $Q^n = T^n \setminus F^n \simeq T^n_{(n-1)}$ (skel.) punctured n -space $\tilde{Q}^n = \mathbf{R}^n \setminus (\lfloor \frac{1}{4}, \frac{3}{4} \rfloor^n + \mathbf{Z}^n) \simeq \mathbf{R}^n_{(n-1)}$

with d-paths via quotient map $\mathbf{R}^n \downarrow T^n$.

Aim: Describe the homotopy type of loops $\vec{P}(Q) = \vec{P}(Q)(\mathbf{0}, \mathbf{0})$

 $\vec{P}(Q)\hookrightarrow \Omega Q(\mathbf{0},\mathbf{0}) \leadsto \text{disjoint union } \vec{P}(Q)=\bigsqcup_{\mathbf{k}\geq \mathbf{0}} \vec{P}(\mathbf{k})(Q)$ with multiindex = multidegree $\mathbf{k}=(k_1,\ldots,k_n)\in \mathbf{Z}_+^n, \, k_i\geq 0$. $\vec{P}(\mathbf{k})(Q)\cong \vec{P}(\tilde{Q}^n)(\mathbf{0},\mathbf{k})=: \mathbf{Z}(\mathbf{k}).$

Path spaces as colimits

Category $\mathcal{J}(n)$

Poset category of proper non-empty subsets of [1:n] with inclusions as morphisms.

Via characteristic functions isomorphic to the category of non-identical bit sequences of length n: $\varepsilon = (\varepsilon_1, \dots \varepsilon_n) \in \mathcal{J}(n)$. $\mathcal{B}\mathcal{J}(n) \cong \partial \Delta^{n-1} \cong \mathcal{S}^{n-2}$.

Definition

$$U_{\varepsilon}(\mathbf{k}) := \{ \mathbf{x} \in \mathbf{R}^n | \ \varepsilon_j = 1 \Rightarrow x_j \le k_j - 1 \text{ or } \exists i : x_i \ge k_i \}$$

$$Z_{\varepsilon}(\mathbf{k}) := \vec{P}(U_{\varepsilon}(\mathbf{k}))(\mathbf{0}, \mathbf{k}).$$

Lemma

$$Z_{\varepsilon}(\mathbf{k}) \simeq Z(\mathbf{k} - \varepsilon)$$

Theorem

$$Z(\mathbf{k}) = \operatorname{colim}_{\varepsilon \in \mathcal{J}(n)} Z_{\varepsilon}(\mathbf{k}) \simeq \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} Z_{\varepsilon}(\mathbf{k}) \simeq \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} Z(\mathbf{k} - \varepsilon).$$

Path spaces as colimits

Category $\mathcal{J}(n)$

Poset category of proper non-empty subsets of [1:n] with inclusions as morphisms.

Via characteristic functions isomorphic to the category of non-identical bit sequences of length n: $\varepsilon = (\varepsilon_1, \dots \varepsilon_n) \in \mathcal{J}(n)$. $\mathcal{B}\mathcal{J}(n) \cong \partial \Delta^{n-1} \cong \mathcal{S}^{n-2}$.

Definition

$$U_{\varepsilon}(\mathbf{k}) := \{ \mathbf{x} \in \mathbf{R}^n | \ \varepsilon_j = 1 \Rightarrow x_j \le k_j - 1 \text{ or } \exists i : x_i \ge k_i \}$$

$$Z_{\varepsilon}(\mathbf{k}) := \vec{P}(U_{\varepsilon}(\mathbf{k}))(\mathbf{0}, \mathbf{k}).$$

Lemma

$$Z_{\varepsilon}(\mathbf{k}) \simeq Z(\mathbf{k} - \varepsilon)$$

Theorem

$$Z(\mathbf{k}) = \operatorname{colim}_{\varepsilon \in \mathcal{J}(n)} Z_{\varepsilon}(\mathbf{k}) \simeq \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} Z_{\varepsilon}(\mathbf{k}) \simeq \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} Z(\mathbf{k} - \varepsilon).$$

Path spaces as colimits

Category $\mathcal{J}(n)$

Poset category of proper non-empty subsets of [1:n] with inclusions as morphisms.

Via characteristic functions isomorphic to the category of non-identical bit sequences of length n: $\varepsilon = (\varepsilon_1, \dots \varepsilon_n) \in \mathcal{J}(n)$. $\mathcal{B}\mathcal{J}(n) \cong \partial \Delta^{n-1} \cong \mathcal{S}^{n-2}$.

Definition

$$U_{\varepsilon}(\mathbf{k}) := \{ \mathbf{x} \in \mathbf{R}^n | \ \varepsilon_j = 1 \Rightarrow x_j \le k_j - 1 \text{ or } \exists i : x_i \ge k_i \}$$

$$Z_{\varepsilon}(\mathbf{k}) := \vec{P}(U_{\varepsilon}(\mathbf{k}))(\mathbf{0}, \mathbf{k}).$$

Lemma

$$Z_{\varepsilon}(\mathbf{k}) \simeq Z(\mathbf{k} - \varepsilon).$$

Theorem

$$Z(\mathbf{k}) = \operatorname{colim}_{\varepsilon \in \mathcal{J}(n)} Z_{\varepsilon}(\mathbf{k}) \simeq \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} Z_{\varepsilon}(\mathbf{k}) \simeq \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} Z(\mathbf{k} - \varepsilon).$$

An equivalent homotopy colimit construction

Inductive homotopy colimites

Using the category $\mathcal{J}(n)$ construct for $\mathbf{k} \in \mathbf{Z}^n$, $\mathbf{k} \ge \mathbf{0}$:

- $X(\mathbf{k}) = * \text{ if } \prod_{1}^{n} k_{i} = 0;$
- $\bullet \ X(\mathbf{k}) = \mathsf{hocolim}_{\varepsilon \in \mathcal{J}(n)} \, X(\mathbf{k} \varepsilon).$

By construction $\mathbf{k} \leq \mathbf{I} \Rightarrow X(\mathbf{k}) \subseteq X(\mathbf{I}); X(\mathbf{1}) \cong \partial \Delta^{n-1}$.

Inductive homotopy equivalences

$$q(\mathbf{k}): Z(\mathbf{k}) \to X(\mathbf{k})$$

- $\prod_{i=1}^{n} k_{i} = 0 \Rightarrow Z(\mathbf{k})$ contractible, $X(\mathbf{k}) = *$
- $\begin{array}{l} \bullet \ \, q(\mathbf{k}) = \mathsf{hocolim}_{\varepsilon \in \mathcal{J}(n)} \, q(\mathbf{k} \varepsilon) : Z(\mathbf{k}) \simeq \\ \ \, \mathsf{hocolim}_{\varepsilon \in \mathcal{J}(n)} \, Z(\mathbf{k} \varepsilon) \to \mathsf{hocolim}_{\varepsilon \in \mathcal{J}(n)} \, X(\mathbf{k} \varepsilon) = X(\mathbf{k}). \end{array}$

An equivalent homotopy colimit construction

Inductive homotopy colimites

Using the category $\mathcal{J}(n)$ construct for $\mathbf{k} \in \mathbf{Z}^n$, $\mathbf{k} \ge \mathbf{0}$:

- $X(\mathbf{k}) = * \text{ if } \prod_{1}^{n} k_{i} = 0;$
- $X(\mathbf{k}) = \mathsf{hocolim}_{\varepsilon \in \mathcal{J}(n)} X(\mathbf{k} \varepsilon)$.

By construction $\mathbf{k} \leq \mathbf{I} \Rightarrow X(\mathbf{k}) \subseteq X(\mathbf{I}); X(\mathbf{1}) \cong \partial \Delta^{n-1}$.

Inductive homotopy equivalences

$$q(\mathbf{k}): \mathbf{Z}(\mathbf{k}) \to \mathbf{X}(\mathbf{k})$$
:

- $\prod_{i=1}^{n} k_i = 0 \Rightarrow Z(\mathbf{k})$ contractible, $X(\mathbf{k}) = *$
- $\bullet \ \ q(\mathbf{k}) = \mathsf{hocolim}_{\varepsilon \in \mathcal{J}(n)} \ q(\mathbf{k} \varepsilon) : Z(\mathbf{k}) \simeq \\ \mathsf{hocolim}_{\varepsilon \in \mathcal{J}(n)} \ Z(\mathbf{k} \varepsilon) \to \mathsf{hocolim}_{\varepsilon \in \mathcal{J}(n)} \ X(\mathbf{k} \varepsilon) = X(\mathbf{k}).$

Homology and cohomology of space $Z(\mathbf{k})$ of d-paths

Definition

- $\bullet \ \ I \ll m \in \mathbf{Z}_+^n \Leftrightarrow I_j < m_j, 1 \leq j \leq n.$
- ullet $\mathcal{O}^n = \{(\mathbf{I}, \mathbf{m}) | \mathbf{I} \ll \mathbf{m} \text{ or } \mathbf{m} \ll \mathbf{I}\} \subset \mathbf{Z}_+^n \times \mathbf{Z}_+^n \text{ord. pairs}$
- ullet $\mathbf{B}(\mathbf{k}) := \mathbf{Z}_+^n (\leq \mathbf{k}) \times \mathbf{Z}_+^n (\leq \mathbf{k}) \setminus \mathcal{O}^n$ unordered pairs

Theorem

For n > 2, $H^*(Z(\mathbf{k})) = \mathbf{Z}[\mathbf{Z}_+^n(\leq \mathbf{k})]/_{\mathcal{I}(\mathbf{k})}$. All generators have degree n-2. $H_*(Z(\mathbf{k})) \cong H^*(Z(\mathbf{k}))$ as abelian groups.

Proof

(Bousfield-Kan) spectral sequence argument, using projectivity of the functor $H_*: \mathcal{J}(n) \to \mathbf{Ab}_*, \ \mathbf{k} \mapsto H_*(Z(\mathbf{k})).$

Homology and cohomology of space $Z(\mathbf{k})$ of d-paths

Definition

- $\bullet \ \ \mathbf{I} \ll \mathbf{m} \in \mathbf{Z}_+^n \Leftrightarrow l_j < m_j, 1 \leq j \leq n.$
- ullet $\mathcal{O}^n = \{(\mathbf{I}, \mathbf{m}) | \mathbf{I} \ll \mathbf{m} \text{ or } \mathbf{m} \ll \mathbf{I}\} \subset \mathbf{Z}_+^n \times \mathbf{Z}_+^n \text{ord. pairs}$
- ullet $\mathbf{B}(\mathbf{k}) := \mathbf{Z}_+^n (\leq \mathbf{k}) \times \mathbf{Z}_+^n (\leq \mathbf{k}) \setminus \mathcal{O}^n$ unordered pairs

Theorem

For n > 2, $H^*(Z(\mathbf{k})) = \mathbf{Z}[\mathbf{Z}_+^n(\leq \mathbf{k})]/_{\mathcal{I}(\mathbf{k})}$. All generators have degree n-2. $H_*(Z(\mathbf{k})) \cong H^*(Z(\mathbf{k}))$ as abelian groups.

Proof

(Bousfield-Kan) spectral sequence argument, using projectivity of the functor $H_*: \mathcal{J}(n) \to \mathbf{Ab}_*, \ \mathbf{k} \mapsto H_*(Z(\mathbf{k})).$

Homology and cohomology of space $Z(\mathbf{k})$ of d-paths

Definition

- $\bullet \ \ \mathbf{I} \ll \mathbf{m} \in \mathbf{Z}_+^n \Leftrightarrow I_j < m_j, 1 \leq j \leq n.$
- ullet $\mathcal{O}^n = \{(\mathbf{I}, \mathbf{m}) | \mathbf{I} \ll \mathbf{m} \text{ or } \mathbf{m} \ll \mathbf{I}\} \subset \mathbf{Z}_+^n \times \mathbf{Z}_+^n \text{ord. pairs}$
- ullet $\mathbf{B}(\mathbf{k}) := \mathbf{Z}_+^n (\leq \mathbf{k}) \times \mathbf{Z}_+^n (\leq \mathbf{k}) \setminus \mathcal{O}^n$ unordered pairs

Theorem

For n > 2, $H^*(Z(\mathbf{k})) = \mathbf{Z}[\mathbf{Z}_+^n(\leq \mathbf{k})]/_{\mathcal{I}(\mathbf{k})}$. All generators have degree n - 2. $H_*(Z(\mathbf{k})) \cong H^*(Z(\mathbf{k}))$ as abelian groups.

Proof

(Bousfield-Kan) spectral sequence argument, using projectivity of the functor $H_*: \mathcal{J}(n) \to \mathbf{Ab}_*, \ \mathbf{k} \mapsto H_*(Z(\mathbf{k})).$

Interpretation via cube sequences

Betti numbers

Cube sequences

$$[\mathbf{a}^*] := [\mathbf{0} \ll \mathbf{a}^1 \ll \mathbf{a}^2 \ll \cdots \ll \mathbf{a}^r = \mathbf{I}] \in A^n_{r(n-2)}(\mathbf{I})$$

of size $I \in \mathbf{Z}_{+}^{n}$, length r and degree r(n-2).

 $A_*^n(*)$ the free abelian group generated by all cube sequences.

$$A_*^n (\leq \mathbf{k}) := \bigoplus_{\mathbf{l} \leq \mathbf{k}} A_*^n (\mathbf{l}).$$

$$H_{r(n-2)}(Z(\mathbf{k})) \stackrel{\sim}{\cong} A^n_{r(n-2)}(\leq \mathbf{k})$$

generated by cube sequences of length r and size $\leq \mathbf{k}$.

Betti numbers of $Z(\mathbf{k})$

Theorem

n = 2:
$$\beta_0 = \binom{k_1 + k_2}{k_1}$$
; $\beta_j = 0$, $j > 0$;
n > 2: $\beta_0 = 1$. $\beta_{i(n-2)} = \prod_{j=1}^{n} \binom{k_j}{i}$, $\beta_i = 0$ else

Corollary

- ① Small homological dimension of $Z(\mathbf{k})$: $(\min_i k_i)(n-2)$.
- **2** For $\mathbf{k} = (k, ..., k)$, $\beta_i(Z(\mathbf{k})) = \beta_{k(n-2)-i}(Z(\mathbf{k}))$

Interpretation via cube sequences

Betti numbers

Cube sequences

$$[\mathbf{a}^*] := [\mathbf{0} \ll \mathbf{a}^1 \ll \mathbf{a}^2 \ll \cdots \ll \mathbf{a}^r = \mathbf{I}] \in \mathcal{A}^n_{r(n-2)}(\mathbf{I})$$
 of size $\mathbf{I} \in \mathbf{Z}^n_+$, length r and degree $r(n-2)$.

 $A_*^n(*)$ the free abelian group generated by all cube sequences.

$$A_*^n (\leq \mathbf{k}) := \bigoplus_{\mathbf{l} \leq \mathbf{k}} A_*^n (\mathbf{l}).$$

$$H_{r(n-2)}(Z(\mathbf{k})) \cong A^n_{r(n-2)}(\leq \mathbf{k})$$

generated by cube sequences of length r and size $\leq k$.

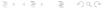
Betti numbers of $Z(\mathbf{k})$

Theorem

n = 2:
$$\beta_0 = \binom{k_1 + k_2}{k_1}$$
; $\beta_j = 0$, $j > 0$;
n > 2: $\beta_0 = 1$, $\beta_{i(n-2)} = \prod_{1}^{n} \binom{k_j}{i}$, $\beta_i = 0$ else.

Corollary

- **1** Small homological dimension of $Z(\mathbf{k})$: $(\min_i k_i)(n-2)$.
- **2** For $\mathbf{k} = (k, ..., k)$, $\beta_i(Z(\mathbf{k})) = \beta_{k(n-2)-i}(Z(\mathbf{k}))$.



- The result can be stated and generalized for a complex $T^n_{(n-1)} \subset K \subset T^n$ with universal cover $\mathbf{R}^n_{(n-1)} \subset \tilde{K} \subset \mathbf{R}^n$. Homology is generated by cube sequences $[\mathbf{a}^*] := [\mathbf{0} \ll \mathbf{a}^1 \ll \mathbf{a}^2 \ll \cdots \ll \mathbf{a}^r = \mathbf{I}]$ such that the cells $[\mathbf{a}^i \mathbf{1}, \mathbf{a}^i] \not\subset \tilde{K}$.
- A cube sequence a* is maximal if it is not properly contained in another cube sequence with same endpoints.
- A maximal cube sequence \mathbf{a}^* gives rise to a subspace $\vec{P}(\mathbf{a}^*)(\mathbf{0},\mathbf{k}) \subset \vec{P}(\tilde{K})(\mathbf{0},\mathbf{k})$ concatenation of paths on boundary of cubes $[\mathbf{a}^i-\mathbf{1},\mathbf{a}^i]$ and contractible path spaces.
- $Y(\mathbf{k}) = \bigcup_{\mathbf{a}^*} \vec{P}(\mathbf{a}^*)(\mathbf{0}, \mathbf{k})$, \mathbf{a}^* maximal. Then also $Y(\mathbf{k}) \simeq \mathsf{hocolim}_{\varepsilon \in \mathcal{J}(n)} Y(\mathbf{k} \varepsilon)$ and $Y(\mathbf{k})$ contractible if $\prod_i k_i = 0$.
- Hence $Y(\mathbf{k}) \simeq X(\mathbf{k}) \simeq Z(\mathbf{k})$.
- $\vec{P}(\mathbf{a}^*)(\mathbf{0},\mathbf{k}) \subset \vec{P}(\tilde{K})(\mathbf{0},\mathbf{k})$ induces an injection $H^*(\vec{P}(\mathbf{a}^*)(\mathbf{0},\mathbf{k})) \cong H^*((S^{n-2})^r) \to H^*(\vec{P}(\tilde{K})(\mathbf{0},\mathbf{k})) \cong \mathbf{b}$

- The result can be stated and generalized for a complex $T^n_{(n-1)} \subset K \subset T^n$ with universal cover $\mathbf{R}^n_{(n-1)} \subset \tilde{K} \subset \mathbf{R}^n$. Homology is generated by cube sequences $[\mathbf{a}^*] := [\mathbf{0} \ll \mathbf{a}^1 \ll \mathbf{a}^2 \ll \cdots \ll \mathbf{a}^r = \mathbf{I}]$ such that the cells $[\mathbf{a}^i \mathbf{1}, \mathbf{a}^i] \not\subset \tilde{K}$.
- A cube sequence a* is maximal if it is not properly contained in another cube sequence with same endpoints.
- A maximal cube sequence \mathbf{a}^* gives rise to a subspace $\vec{P}(\mathbf{a}^*)(\mathbf{0},\mathbf{k}) \subset \vec{P}(\tilde{K})(\mathbf{0},\mathbf{k})$ concatenation of paths on boundary of cubes $[\mathbf{a}^i-\mathbf{1},\mathbf{a}^i]$ and contractible path spaces.
- $Y(\mathbf{k}) = \bigcup_{\mathbf{a}^*} \vec{P}(\mathbf{a}^*)(\mathbf{0}, \mathbf{k})$, \mathbf{a}^* maximal. Then also $Y(\mathbf{k}) \simeq \mathsf{hocolim}_{\varepsilon \in \mathcal{J}(n)} Y(\mathbf{k} \varepsilon)$ and $Y(\mathbf{k})$ contractible if $\prod_i k_i = 0$.
- Hence $Y(\mathbf{k}) \simeq X(\mathbf{k}) \simeq Z(\mathbf{k})$.
- $\vec{P}(\mathbf{a}^*)(\mathbf{0},\mathbf{k}) \subset \vec{P}(\tilde{K})(\mathbf{0},\mathbf{k})$ induces an injection $H^*(\vec{P}(\mathbf{a}^*)(\mathbf{0},\mathbf{k})) \cong H^*((S^{n-2})^r) \to H^*(\vec{P}(\tilde{K})) \to H^*(\vec{P}(\tilde{K})) \to H^*(\vec{P}(\tilde{K}))$

- The result can be stated and generalized for a complex $T^n_{(n-1)} \subset K \subset T^n$ with universal cover $\mathbf{R}^n_{(n-1)} \subset \tilde{K} \subset \mathbf{R}^n$. Homology is generated by cube sequences $[\mathbf{a}^*] := [\mathbf{0} \ll \mathbf{a}^1 \ll \mathbf{a}^2 \ll \cdots \ll \mathbf{a}^r = \mathbf{I}]$ such that the cells $[\mathbf{a}^i \mathbf{1}, \mathbf{a}^i] \not\subset \tilde{K}$.
- A cube sequence a* is maximal if it is not properly contained in another cube sequence with same endpoints.
- A maximal cube sequence \mathbf{a}^* gives rise to a subspace $\vec{P}(\mathbf{a}^*)(\mathbf{0},\mathbf{k}) \subset \vec{P}(\tilde{K})(\mathbf{0},\mathbf{k})$ concatenation of paths on boundary of cubes $[\mathbf{a}^i-\mathbf{1},\mathbf{a}^i]$ and contractible path spaces.
- $Y(\mathbf{k}) = \bigcup_{\mathbf{a}^*} \vec{P}(\mathbf{a}^*)(\mathbf{0}, \mathbf{k})$, \mathbf{a}^* maximal. Then also $Y(\mathbf{k}) \simeq \mathsf{hocolim}_{\varepsilon \in \mathcal{J}(n)} Y(\mathbf{k} \varepsilon)$ and $Y(\mathbf{k})$ contractible if $\prod_i k_i = 0$.
- Hence $Y(\mathbf{k}) \simeq X(\mathbf{k}) \simeq Z(\mathbf{k})$.
- $P(\mathbf{a}^*)(\mathbf{0}, \mathbf{k}) \subset P(\tilde{K})(\mathbf{0}, \mathbf{k})$ induces an injection $H^*(P(\mathbf{a}^*)(\mathbf{0}, \mathbf{k})) \cong H^*((S^{n-2})^r) \to H^*(P(\tilde{K})(\mathbf{0}, \mathbf{k})) \cong H^*(S^{n-2})$

- The result can be stated and generalized for a complex $T^n_{(n-1)} \subset K \subset T^n$ with universal cover $\mathbf{R}^n_{(n-1)} \subset \tilde{K} \subset \mathbf{R}^n$. Homology is generated by cube sequences $[\mathbf{a}^*] := [\mathbf{0} \ll \mathbf{a}^1 \ll \mathbf{a}^2 \ll \cdots \ll \mathbf{a}^r = \mathbf{I}]$ such that the cells $[\mathbf{a}^i \mathbf{1}, \mathbf{a}^i] \not\subset \tilde{K}$.
- A cube sequence a* is maximal if it is not properly contained in another cube sequence with same endpoints.
- A maximal cube sequence \mathbf{a}^* gives rise to a subspace $\vec{P}(\mathbf{a}^*)(\mathbf{0},\mathbf{k}) \subset \vec{P}(\tilde{K})(\mathbf{0},\mathbf{k})$ concatenation of paths on boundary of cubes $[\mathbf{a}^i-\mathbf{1},\mathbf{a}^i]$ and contractible path spaces.
- $Y(\mathbf{k}) = \bigcup_{\mathbf{a}^*} \vec{P}(\mathbf{a}^*)(\mathbf{0}, \mathbf{k})$, \mathbf{a}^* maximal. Then also $Y(\mathbf{k}) \simeq \mathsf{hocolim}_{\varepsilon \in \mathcal{J}(n)} Y(\mathbf{k} \varepsilon)$ and $Y(\mathbf{k})$ contractible if $\prod_i k_i = 0$.
- Hence $Y(\mathbf{k}) \simeq X(\mathbf{k}) \simeq Z(\mathbf{k})$.
- $\vec{P}(\mathbf{a}^*)(\mathbf{0}, \mathbf{k}) \subset \vec{P}(\tilde{K})(\mathbf{0}, \mathbf{k})$ induces an injection $H^*(\vec{P}(\mathbf{a}^*)(\mathbf{0}, \mathbf{k})) \cong H^*((S^{n-2})^r) \to H^*(\vec{P}(\tilde{K})(\mathbf{0}, \mathbf{k})).$

To conclude

Conclusions and challenges

- From a (rather compact) state space model (shape of data) to a finite dimensional trace space model (represent shape).
- Calculations of invariants (Betti numbers) of path space possible for state spaces of a moderate size (measuring shape).
- Dimension of trace space model reflects not the size but the complexity of state space (number of obstructions, number of processors); still: curse of dimensionality.
- Challenge: General properties of path spaces for algorithms solving types of problems in a distributed manner?
 - Connections to the work of Herlihy and Rajsbaum protocol complex etc
- Challenge: Morphisms between HDA → d-maps between cubical state spaces → functorial maps between trace spaces. Properties? Equivalences?

To conclude

Conclusions and challenges

- From a (rather compact) state space model (shape of data) to a finite dimensional trace space model (represent shape).
- Calculations of invariants (Betti numbers) of path space possible for state spaces of a moderate size (measuring shape).
- Dimension of trace space model reflects not the size but the complexity of state space (number of obstructions, number of processors); still: curse of dimensionality.
- Challenge: General properties of path spaces for algorithms solving types of problems in a distributed manner?
 Connections to the work of Herlihy and Rajsbaum protocol complex etc
- Challenge: Morphisms between HDA → d-maps between cubical state spaces → functorial maps between trace spaces. Properties? Equivalences?

Want to know more?

Books

- Kozlov, Combinatorial Algebraic Topology, Springer, 2008.
- Grandis, Directed Algebraic Topology, Cambridge UP, 2009.

Articles

- MR, Simplicial models for trace spaces, AGT 10 (2010), 1683 – 1714.
- MR, Execution spaces for simple HDA,
 Appl. Alg. Eng. Comm. Comp. 23 (2012), 59 84.
- MR, Simplicial models for trace spaces II: General Higher Dimensional Automata, AGT 12 (2012), 1741 – 1761.
- Fajstrup, Trace spaces of directed tori with rectangular holes, Aalborg University Research Report R-2011-08
- Fajstrup et al., Trace Spaces: an efficient new technique for State-Space Reduction, Proceedings ESOP, Lect. Notes Comput. Sci. 7211 (2012), 274 – 294
- MR & K. Ziemiański, Homology of spaces of directed paths on Euclidean cubical complexes, J. Homotopy Relat. Struct. 8 (2013), to appear.
- Rick Jardine, Path categories and resolutions, Homology, Homotopy Appl. 12 (2010), 231 – 244.

Want to know more?

Books

- Kozlov, Combinatorial Algebraic Topology, Springer, 2008.
- Grandis, Directed Algebraic Topology, Cambridge UP, 2009.

Articles

- MR, Simplicial models for trace spaces, AGT 10 (2010), 1683 – 1714.
- MR, Execution spaces for simple HDA,
 Appl. Alg. Eng. Comm. Comp. 23 (2012), 59 84.
- MR, Simplicial models for trace spaces II: General Higher Dimensional Automata, AGT 12 (2012), 1741 – 1761.
- Fajstrup, Trace spaces of directed tori with rectangular holes, Aalborg University Research Report R-2011-08.
- Fajstrup et al., Trace Spaces: an efficient new technique for State-Space Reduction, Proceedings ESOP, Lect. Notes Comput. Sci. 7211 (2012), 274 – 294.
- MR & K. Ziemiański, Homology of spaces of directed paths on Euclidean cubical complexes, J. Homotopy Relat. Struct. 8 (2013), to appear.
- Rick Jardine, Path categories and resolutions, Homology, Homotopy Appl. 12 (2010), 231 244.

Advertisement for ACAT Thank you!

ESF network ACAT

Applied and Computational Algebraic Topology

http: http://acat.lix. //www.esf.org/acat polytechnique.fr/

Thank you for your attention

Advertisement for ACAT Thank you!

ESF network ACAT

Applied and Computational Algebraic Topology

http://acat.lix.//www.esf.org/acat polytechnique.fr/

Thank you for your attention!