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Topological Complexity

X - configuration space of a mechanical system.
A motion planning algorithm is a section s : X x X — X' (I = [0, 1]) of
T=ev: X' 5 Xx X, v (4(0),7(1))

TC(X) ="minimal number of rules in a motion planner in X”.
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X - configuration space of a mechanical system.
A motion planning algorithm is a section s : X x X — X' (I = [0, 1]) of
T=ev: X' 5 Xx X, v (4(0),7(1))

TC(X) ="minimal number of rules in a motion planner in X”.

From now on X is a path-connected CW-complex.

Definition. (M. Farber, 2003) TC(X) is the least integer n such that
X x X can be covered by n open sets Us,..., U, on each of which the

fibration
T=evpq: X - XxX

admits a continuous (local) section s; : U; — X'.
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Theorem. (M. Farber)
cat(X) 2cat(X) — 1
z.d.cuplength(X) + 1 } < TC(X) < { dim(X)+1 (X 1-conn.)

where
@ (Lusternik-Schnirelmann category)
catX < n: X=V,U..UV, V, contractile in X.
@ (zero-divisors cuplength)

z.d.cuplength(X) = nil(ker U)

where U : H*(X) ® H*(X) — H*(X) is the cup product.
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Monoidal Topological Complexity

Variations of TC have been introduced, for instance:
@ Symmetric Topological Complexity (M. Farber, M. Grant, 2006)
@ Higher Topological Complexity (Y. Rudyak, 2009)

and also:

Definition. (Monoidal TC - N. lwase, M. Sakai, 2010)

TCM(X) is the least integer n such that X x X can be covered by n
open sets Us,..., U, on each of which 7 : X/ — X x X admits a
(continuous) section s; : U; — X! such that

si(x,x) =cx if (x,x) e U,.
Theorem. (I-S) TC(X) < TCM(X) < TC(X) +1.

Conjecture. (I-S) TC(X) = TCM(X).
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Remark. If I-S conjecture holds, then for any space X,
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where Ca = X x X/A(X) is the cofibre of A : X — X x X.

Conjecture. (Dranishnikov) TCM(X) = cat(Ca).
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TC, Sectional Category

Definition. (A. Schwarz, 1966) secat(p : E — B) is the least integer n
such that B can be covered by n open sets on each of which p admits
a (continuous) local section.

@ TC(X) = secat(m : X' — X x X)
@ cat(X) = secat(evy : PpX — X)
where PoX = {y € X/,7(0) = «}.

@ By requiring homotopy sections secat can be defined for any map
and we have

TC(X) = secat(A : X — X x X) cat(X) = secat(x — X)

* i PoX

X > X!
X / \ evq
X

X x X




Sectional category and Joins

The join of 2 fibrations p: E — Band p’ : E' — Bis the map

E+gE := EII(E xg E' x [0,1])IIE'/ ~ — B

(e.€.) — p(e)=p(€)

where ~ is given by (e, &, 1) ~ { Z/ z{ z ?

This map is a fibration with fibre
FxF =FUFxF x[0,1]ITF'/ ~

where F and F’ are the respective fibres of p and p'.
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For p: E — B, consider

pi=p and,forn>2, pp:Jp(p)=Exg---xgE — B
N——
nfactors

Theorem. (A. Schwarz) If B is normal, then

secat(p) < n <= p, admits a (continuous) section.

Forp=m:X'— X x X:

Corollary. TC(X) < n <= m,: Jo(m) — X x X has a section.
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Given a fibration p : E — B, we have, for any n, a canonical diagram:

E —"% Jn(p)

NG

B

fp=r:X — X x Xwehave X —2 X —2% J.(r)

\x\ lﬂn
X x X
Theorem. (Dranishnikov) TCM(X) < n iff

7n - Jn(m) — X x X admits a section s such that sA = A\,cy.



Doerane-El Haouari relative category and conjecture

Definition. (D-EH, 2012) The relative category of a fibratonp: E — B
is given by relcat(p) < n <= p, admits a section s such that sp~A\,.

E—2% Un(p)

S

B

Theorem. (D-EH) secat(p) < relcat(p) < secat(p) + 1.
Conjecture. (D-EH) If p admits a homotopy retraction then

relcat(p) = secat(p).



If p=evy: PhX — X we have

An

* — = Py X Jn(evq)
evq
l(ew )n

X

@ evy has a homotopy retraction (X — x = PyX)
@ D-EH conjecture holds.
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Forp=m:X'—-XxX
@ there is a homotopy retraction, for instance

Xx X2 x % x!
@ we can prove that

relcat(m) = TCM(X)

Consequence. Forp=7:X' = Xx X

D-EH conjecture = I-S conjecture
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Theorem. D-EH conjecture holds after suspension.

Meaning: Suppose that

@ p admits a homotopy retraction r

® Y p,: XJy(p) — X(B) has a homotopy section s
then

Ypn: Xdn(p) — X(B) admits a homotopy section s such that
SYp~% )\,

YE 25 J,(p)
> lan

*B
Corollary. [-S conjecture holds after suspension.



Proof:
@ Since p : E — B admits a homotopy retraction r, the sequence

L. .¢,

splits after suspension:



Proof:
@ Since p : E — B admits a homotopy retraction r, the sequence

L. .¢,
splits after suspension:

sEL-sB%L5C, vrq+Tprr~id
Xr v



@ If sis a homotopy section of L p, then

§:= SUSq+ TANTr YE 2225 Jn(p)

NG

2B——=2Cp

v

is a homotopy section of ¥ p, such that sXp~3 )\,
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Another weak version of |-S conjecture

Considering “weak” versions of cat and TC in the sense of
Berstein-Hilton:

Theorem. wTC(X) = wITCM(X) = wcat(Ca)
where:
@ wcat(Ca) < n:< Ca A (Ca)" — (Ca)"" is homotopically trivial.
@ WIC(X) < n & X x X 20 (X x X)" = (Ca)" — (Ca)"
is homotopically trivial.

@ wICM(X) < n & X x X — (Ca)"" is homotopically trivial rel.
A(X).
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Rational Homotopy Theory

@ Sullivan (contravariant) functor of polynomial forms:
Ap : TOP — CDGA (comm. diff. grad. algebra)

e If X is simply-connected and of finite type then Ap,(X) contains all
rational homotopy information about X.
@ In particular, H(Ap.(X)) = H*(X; Q).

@ Model of X in CDGA: (A, d) weakly equivalent to Ap,(X):

(Ad) 20 <" > < Ap1(X)

@ Sullivan model of X: (AV,d) = Ap (X)

If d(V) ¢ A>T(V) the model is said to be minimal. In this case
V = dual of 7.(X) ® Q.
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secatg, relcatg

Let E- 2 B Dbe a fibration with E, B simply-connected spaces of finite
type.

. Ap(An
By applying Ap, we get Ap,(E) <220 Ap (J(p))
ApL(p) TAPL(pn)
Ap(B)

Definition.

@ secatp(p) < nif Ap.(pn) admits a homotopy retraction in CDGA.

@ relcatg(p) < nif Ap.(pn) admits (in CDGA) a homotopy retraction
such that APL(p)T ~ APL()\n)-

For p = : X! = X x X we use the notation TCq(X), TCM(X).



If p: E—~B admits a homotopy retraction r : B — E we have:

Ap; (An
Ap(E) =222 A (Un(p))

ApL(Pn
m T pL(Pn)

ApL(B)
APL(r)T
ApL(E)

Theorem. D-EH conjecture holds at the level of Ap; (E)-modules.
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Theorem. (J. Carrasquel, 2012) Let ¢ : (A, d) — (C,d) be a
surjective model of p. If the projection

(A, d) — (A/(ker )", d)

admits a homotopy retraction in CDGA then secatg(p) < n.

@ Forp=n: X' — X x X: consider the multiplication
w:ANVeAV = AV (AV,d) Sullivan model of X

If AV® AV — AV ® AV/(keru)" admits a htpy retraction then
TCo(X) < n. (B. Jessup, P.-E. Parent, A. Murillo, 2012)

@ (Y. Félix, S. Halperin, 1982) For p = evy : PoX — X:
catpX < n< AV — AV/(kere)" has a htpy retraction

e : AV — Q is the augmentation.
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Theorem. Let ¢ a surjective model of p. We have

secatg(p) < relcatg(p) < nil(ker ) + 1.

Corollary. If (A, d) is a model of X with multiplication p4 then
TCo(X) < TCY(X) < nilker s + 1.
In particular, if there exists a model (A, d) of X such that
TCo(X) = nilker g + 1

then TCy(X) = TCY(X).
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Using previous results obtained by

@ L. Lechuga, A. Murillo (2007)

@ B. Jessup, P-E. Parent, A. Murillo (2012)

@ P. Ghienne, L. Fernandez, T. Kahl, L. V. (2006)
we can state that I-S conjecture holds rationnally for:

@ formal spaces: (H*(X),0) is a model

nilker U+ 1 < TCq < TCH < nilkerU + 1
@ spaces whose rational homotopy is concentrated in odd degrees

nilkerU + 1 = TCy = TCY = nil ker pipy + 1
o for the (non formal) space X = S3 V S Ua [ab)] €° Ulp,[a,6)] €°-

nilkerU+1=3  MTC = TCq = 4 = nilker us + 1

and TCy(X) = TCY(X).



Remarks
@ (N. Dupont, 1999) There exists a CW-complex X such that

catg(X) < nilkereg + 1

where €4 : A — Q is the augmentation of any model (A, d) of X.

@ (O. Cornea, Y. Félix, S. Halperin, 1998) If X is a Poincaré duality
complex then there exists a model (A, d) of X such that

Cato(X) = nilkerey + 1
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