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Topological Complexity

X - configuration space of a mechanical system.

A motion planning algorithm is a section s : X × X → X I (I = [0,1]) of

π = ev0,1 : X I → X × X , γ 7→ (γ(0), γ(1))

TC(X ) =“minimal number of rules in a motion planner in X ”.

From now on X is a path-connected CW-complex.

Definition. (M. Farber, 2003) TC(X ) is the least integer n such that

X × X can be covered by n open sets U1,..., Un on each of which the

fibration

π = ev0,1 : X I → X × X

admits a continuous (local) section si : Ui → X I .
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Example. (M. Farber) TC(Sn) =

{
2 n odd

3 n even

Theorem. (M. Farber)

cat(X )
z.d.cuplength(X ) + 1

}

≤ TC(X ) ≤

{
2cat(X )− 1

dim(X ) + 1 (X 1-conn.)

where

(Lusternik-Schnirelmann category)

catX ≤ n :⇔ X = V1 ∪ ... ∪ Vn, Vi contractile in X .

(zero-divisors cuplength)

z.d.cuplength(X ) = nil(ker∪)

where ∪ : H∗(X )⊗ H∗(X ) → H∗(X ) is the cup product.
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Monoidal Topological Complexity

Variations of TC have been introduced, for instance:

Symmetric Topological Complexity (M. Farber, M. Grant, 2006)

Higher Topological Complexity (Y. Rudyak, 2009)

and also:

Definition. (Monoidal TC - N. Iwase, M. Sakai, 2010)

TCM(X ) is the least integer n such that X × X can be covered by n

open sets U1,..., Un on each of which π : X I → X × X admits a

(continuous) section si : Ui → X I such that

si(x , x) = cx if (x , x) ∈ Ui .

Theorem. (I-S) TC(X ) ≤ TCM(X ) ≤ TC(X ) + 1.

Conjecture. (I-S) TC(X ) = TCM(X ).
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Theorem. (A. Dranishnikov, 2012) I-S conjecture holds when

dim(X ) ≤ TC(X )(conn(X ) + 1)− 2.

X is a Lie group.

Remark. If I-S conjecture holds, then for any space X ,

TC(X ) ≥ cat(C∆)

where C∆ = X × X/∆(X ) is the cofibre of ∆ : X → X × X .

Conjecture. (Dranishnikov) TCM(X ) = cat(C∆).
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TC, Sectional Category

Definition. (A. Schwarz, 1966) secat(p : E → B) is the least integer n

such that B can be covered by n open sets on each of which p admits

a (continuous) local section.

TC(X ) = secat(π : X I → X × X )

cat(X ) = secat(ev1 : P0X → X )
where P0X = {γ ∈ X I , γ(0) = ∗}.

By requiring homotopy sections secat can be defined for any map

and we have

TC(X ) = secat(∆ : X → X × X ) cat(X ) = secat(∗ → X )

X
cx

∼
//

∆ ""❋
❋❋

❋❋
❋❋

❋❋
X I

π{{①①
①①
①①
①①
①

X × X

∗
∼ //

��❂
❂
❂
❂
❂
❂
❂ P0X

ev1}}④④
④④
④④
④④

X
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Sectional category and Joins

The join of 2 fibrations p : E → B and p′ : E ′ → B is the map

E ∗B E ′ := E ∐ (E ×B E ′ × [0,1]) ∐ E ′/ ∼ → B

〈e,e′, t〉 7→ p(e) = p′(e′)

where ∼ is given by (e,e′, t) ∼

{
e t = 0

e′ t = 1

This map is a fibration with fibre

F ∗ F ′ = F ∐ F × F ′ × [0,1]∐ F ′/ ∼

where F and F ′ are the respective fibres of p and p′.



For p : E → B, consider

p1 = p and, for n ≥ 2, pn : Jn(p) = E ∗B · · · ∗B E
︸ ︷︷ ︸

n factors

→ B

Theorem. (A. Schwarz) If B is normal, then

secat(p) ≤ n ⇐⇒ pn admits a (continuous) section.

For p = π : X I → X × X :

Corollary. TC(X ) ≤ n ⇐⇒ πn : Jn(π) → X × X has a section.
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Given a fibration p : E → B, we have, for any n, a canonical diagram:

E
λn //

p
""❉

❉❉
❉❉

❉❉
❉❉

Jn(p)

pn

��
B

If p = π : X I → X × X we have X

∆ ((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

cx // X I λn //

π

""❋
❋❋

❋❋
❋❋

❋❋
Jn(π)

πn

��
X × X

Theorem. (Dranishnikov) TCM(X ) ≤ n iff

πn : Jn(π) → X × X admits a section s such that s∆ = λncx .
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Doerane-El Haouari relative category and conjecture

Definition. (D-EH, 2012) The relative category of a fibration p : E → B

is given by relcat(p) ≤ n :⇐⇒ pn admits a section s such that sp≃λn.

E
λn //

p
""❉

❉❉
❉❉

❉❉
❉❉

Jn(p)

pn

��
B

s

II

Theorem. (D-EH) secat(p) ≤ relcat(p) ≤ secat(p) + 1.

Conjecture. (D-EH) If p admits a homotopy retraction then

relcat(p) = secat(p).



If p = ev1 : P0X → X we have

∗

))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

∼ // P0X
λn //

ev1

$$■
■■

■■
■■

■■
■

Jn(ev1)

(ev1)n

��
X

ev1 has a homotopy retraction (X → ∗
∼

→ P0X )

D-EH conjecture holds.



For p = π : X I → X × X

there is a homotopy retraction, for instance

X × X
pr1
→ X

cx→ X I

we can prove that

relcat(π) = TCM(X )

Consequence. For p = π : X I → X × X

D-EH conjecture = I-S conjecture
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Theorem. D-EH conjecture holds after suspension.

Meaning: Suppose that

p admits a homotopy retraction r

Σpn : ΣJn(p) → Σ(B) has a homotopy section s

then

Σpn : ΣJn(p) → Σ(B) admits a homotopy section s̃ such that

s̃Σp≃Σλn

ΣE
Σλn //

Σp ##❍
❍❍

❍❍
❍❍

❍❍
ΣJn(p)

Σpn

��
ΣB

Corollary. I-S conjecture holds after suspension.
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Proof:

Since p : E → B admits a homotopy retraction r , the sequence

E
p // B

q // Cp

splits after suspension:

ΣE
Σp // ΣB

Σq //

Σr

kk ΣCp
ν

kk νΣq +ΣpΣr ≃ id



Proof:

Since p : E → B admits a homotopy retraction r , the sequence

E
p // B

q // Cp

splits after suspension:

ΣE
Σp // ΣB

Σq //

Σr

kk ΣCp
ν

kk νΣq +ΣpΣr ≃ id



If s is a homotopy section of Σpn then

s̃ := sνΣq +ΣλnΣr ΣE
Σλn //

Σp

##●
●●

●●
●●

●●
● ΣJn(p)

��
ΣB

Σr

[[

s

UU

Σq // ΣCp
ν

kk

is a homotopy section of Σpn such that s̃Σp≃Σλn



Another weak version of I-S conjecture

Considering “weak” versions of cat and TC in the sense of

Berstein-Hilton:

Theorem. wTC(X ) = wTCM(X ) = wcat(C∆)
where:

wcat(C∆) ≤ n :⇔ C∆
∆n→ (C∆)

n → (C∆)
∧n is homotopically trivial.

wTC(X ) ≤ n :⇔ X × X
∆n→ (X × X )n → (C∆)

n → (C∆)
∧n

is homotopically trivial.

wTCM(X ) ≤ n :⇔ X × X → (C∆)
∧n is homotopically trivial rel.

∆(X ).
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Rational Homotopy Theory

Sullivan (contravariant) functor of polynomial forms:

APL : TOP → CDGA (comm. diff. grad. algebra)

If X is simply-connected and of finite type then APL(X) contains all
rational homotopy information about X .

In particular, H(APL(X)) = H∗(X ;Q).

Model of X in CDGA: (A,d) weakly equivalent to APL(X ):

(A,d)
∼ // •

∼oo ∼ // · · · APL(X )
∼oo

Sullivan model of X : (ΛV ,d)
∼
→ APL(X )

If d(V ) ⊂ Λ>1(V ) the model is said to be minimal. In this case

V ∼= dual of π∗(X )⊗Q.
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secat0, relcat0

Let E
p
→ B be a fibration with E , B simply-connected spaces of finite

type.

By applying APL we get APL(E) APL(Jn(p))
APL(λn)oo

APL(B)

APL(pn)

OO

APL(p)

ii❘❘❘❘❘❘❘❘❘❘❘❘❘❘

Definition.

secat0(p) ≤ n if APL(pn) admits a homotopy retraction in CDGA.

relcat0(p) ≤ n if APL(pn) admits (in CDGA) a homotopy retraction τ
such that APL(p)τ ≃ APL(λn).

For p = π : X I → X × X we use the notation TC0(X ), TCM
0 (X ).
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If p : E→B admits a homotopy retraction r : B → E we have:
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OO

Theorem. D-EH conjecture holds at the level of APL(E)-modules.



Theorem. (J. Carrasquel, 2012) Let ϕ : (A,d) → (C,d) be a

surjective model of p. If the projection

(A,d) → (A/(kerϕ)n, d̄)

admits a homotopy retraction in CDGA then secat0(p) ≤ n.

For p = π : X I → X × X : consider the multiplication

µ : ΛV ⊗ ΛV → ΛV (ΛV ,d) Sullivan model of X

If ΛV ⊗ ΛV → ΛV ⊗ ΛV/(kerµ)n admits a htpy retraction then

TC0(X ) ≤ n. (B. Jessup, P.-E. Parent, A. Murillo, 2012)

(Y. Félix, S. Halperin, 1982) For p = ev1 : P0X → X :

cat0X ≤ n ⇔ ΛV → ΛV/(ker ε)n has a htpy retraction

ε : ΛV → Q is the augmentation.
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Corollary. Let ϕ be a surjective model of p. We have

secat0(p) ≤ nil(kerϕ) + 1

In particular, If (A,d) is a model of X with multiplication µA : A ⊗ A → A

then

TC0(X ) ≤ nil kerµA + 1.
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Using previous results obtained by

L. Lechuga, A. Murillo (2007)

B. Jessup, P.-E. Parent, A. Murillo (2012)

P. Ghienne, L. Fernández, T. Kahl, L. V. (2006)

we can state that I-S conjecture holds rationnally for:

formal spaces: (H∗(X ),0) is a model

nil ker∪+ 1 ≤ TC0 ≤ TCM
0 ≤ nil ker∪+ 1

spaces whose rational homotopy is concentrated in odd degrees

nil ker∪+ 1 = TC0 = TCM
0 = nil kerµΛV + 1

for the (non formal) space X = S3
a ∨ S3

b ∪[a,[a,b]] e8 ∪[b,[a,b]] e8.

nil ker∪+ 1 = 3 MTC = TC0 = 4 = nil kerµA + 1

and TC0(X ) = TCM
0 (X ).
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Remarks

(N. Dupont, 1999) There exists a CW-complex X such that

cat0(X ) < nil ker εA + 1

where εA : A → Q is the augmentation of any model (A,d) of X .

(O. Cornea, Y. Félix, S. Halperin, 1998) If X is a Poincaré duality

complex then there exists a model (A,d) of X such that

cat0(X ) = nil ker εA + 1
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