Topological Complexity and related invariants

Lucile Vandembroucq Centro de Matemática - Universidade do Minho - Portugal Joint work with J. Calcines and J. Carrasquel

Applied and Computational Algebraic Topology Bremen, 19/07/2011

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

X - configuration space of a mechanical system.

A motion planning algorithm is a section $s : X \times X \rightarrow X^{I}$ (I = [0, 1]) of

$$\pi = ev_{0,1} : X' \to X \times X, \quad \gamma \mapsto (\gamma(0), \gamma(1))$$

TC(X) = "minimal number of rules in a motion planner in X". From now on X is a path-connected CW-complex.

Definition. (M. Farber, 2003) TC(X) is the least integer *n* such that $X \times X$ can be covered by *n* open sets $U_1,..., U_n$ on each of which the fibration

$$\pi = ev_{0,1} : X' \to X \times X$$

admits a **continuous** (local) section $s_i : U_i \to X^I$.

X - configuration space of a mechanical system.

A motion planning algorithm is a section $s : X \times X \rightarrow X^{l}$ (l = [0, 1]) of

$$\pi = ev_{0,1} : X' o X imes X, \quad \gamma \mapsto (\gamma(0), \gamma(1))$$

TC(X) = "minimal number of rules in a motion planner in X". From now on X is a path-connected CW-complex.

Definition. (M. Farber, 2003) TC(X) is the least integer *n* such that $X \times X$ can be covered by *n* open sets $U_1, ..., U_n$ on each of which the fibration

$$\pi = ev_{0,1} : X' \to X \times X$$

admits a **continuous** (local) section $s_i : U_i \to X'$.

Example. (M. Farber) $TC(S^n) = \begin{cases} 2 & n \text{ odd} \\ 3 & n \text{ even} \end{cases}$

Theorem. (M. Farber)

$$\begin{array}{c} \operatorname{cat}(X) \\ \operatorname{z.d.cuplength}(X) + 1 \end{array} \right\} \leq \operatorname{TC}(X) \leq \left\{ \begin{array}{c} \operatorname{2cat}(X) - 1 \\ \dim(X) + 1 \end{array} \right. (X \text{ 1-conn.})$$

where

• (Lusternik-Schnirelmann category) $\operatorname{cat} X \leq n : \Leftrightarrow X = V_1 \cup ... \cup V_n, V_i \text{ contractile in } X.$

(zero-divisors cuplength)

 $z.d.cuplength(X) = nil(ker \cup)$

where $\cup : H^*(X) \otimes H^*(X) \to H^*(X)$ is the cup product.

Example. (M. Farber) $TC(S^n) = \begin{cases} 2 & n \text{ odd} \\ 3 & n \text{ even} \end{cases}$

Theorem. (M. Farber)

$$\operatorname{cat}(X)$$

z.d.cuplength (X) + 1 $\left\{ \begin{array}{c} \operatorname{2cat}(X) - 1 \\ \dim(X) + 1 \end{array} \right\} \leq \operatorname{TC}(X) \leq \left\{ \begin{array}{c} \operatorname{2cat}(X) - 1 \\ \dim(X) + 1 \end{array} \right\} (X \text{ 1-conn.})$

where

- (Lusternik-Schnirelmann category) $\operatorname{cat} X \leq n : \Leftrightarrow X = V_1 \cup ... \cup V_n, V_i \text{ contractile in } X.$
- (zero-divisors cuplength)

 $z.d.cuplength(X) = nil(ker \cup)$

where $\cup : H^*(X) \otimes H^*(X) \to H^*(X)$ is the cup product.

- Symmetric Topological Complexity (M. Farber, M. Grant, 2006)
- Higher Topological Complexity (Y. Rudyak, 2009)

and also:

Definition. (Monoidal TC - N. Iwase, M. Sakai, 2010) $TC^{M}(X)$ is the least integer *n* such that $X \times X$ can be covered by *n* open sets $U_1,..., U_n$ on each of which $\pi : X^{I} \to X \times X$ admits a (continuous) section $s_i : U_i \to X^{I}$ such that

$$s_i(x,x) = c_x$$
 if $(x,x) \in U_i$.

Theorem. (I-S) $TC(X) \leq TC^M(X) \leq TC(X) + 1$.

Conjecture. (I-S) $TC(X) = TC^{M}(X)$.

- Symmetric Topological Complexity (M. Farber, M. Grant, 2006)
- Higher Topological Complexity (Y. Rudyak, 2009)

and also:

Definition. (Monoidal TC - N. Iwase, M. Sakai, 2010) $TC^{M}(X)$ is the least integer *n* such that $X \times X$ can be covered by *n* open sets $U_1, ..., U_n$ on each of which $\pi : X^{I} \to X \times X$ admits a (continuous) section $s_i : U_i \to X^{I}$ such that

$$s_i(x,x) = c_x$$
 if $(x,x) \in U_i$.

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem. (I-S) $TC(X) \leq TC^{M}(X) \leq TC(X) + 1$.

Conjecture. (I-S) $TC(X) = TC^{M}(X)$.

- Symmetric Topological Complexity (M. Farber, M. Grant, 2006)
- Higher Topological Complexity (Y. Rudyak, 2009)

and also:

Definition. (Monoidal TC - N. Iwase, M. Sakai, 2010) $TC^{M}(X)$ is the least integer *n* such that $X \times X$ can be covered by *n* open sets $U_1, ..., U_n$ on each of which $\pi : X^{I} \to X \times X$ admits a (continuous) section $s_i : U_i \to X^{I}$ such that

$$s_i(x,x) = c_x$$
 if $(x,x) \in U_i$.

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem. (I-S) $TC(X) \leq TC^{M}(X) \leq TC(X) + 1$.

Conjecture. (I-S) $TC(X) = TC^M(X)$.

- Symmetric Topological Complexity (M. Farber, M. Grant, 2006)
- Higher Topological Complexity (Y. Rudyak, 2009)

and also:

Definition. (Monoidal TC - N. Iwase, M. Sakai, 2010) $TC^{M}(X)$ is the least integer *n* such that $X \times X$ can be covered by *n* open sets $U_1, ..., U_n$ on each of which $\pi : X^{I} \to X \times X$ admits a (continuous) section $s_i : U_i \to X^{I}$ such that

$$s_i(x,x) = c_x$$
 if $(x,x) \in U_i$.

Theorem. (I-S) $TC(X) \leq TC^{M}(X) \leq TC(X) + 1$.

Conjecture. (I-S) $TC(X) = TC^{M}(X)$.

Theorem. (A. Dranishnikov, 2012) I-S conjecture holds when

•
$$\dim(X) \le TC(X)(conn(X) + 1) - 2.$$

• X is a Lie group.

Remark. If I-S conjecture holds, then for any space *X*,

 $\operatorname{TC}(X) \geq \operatorname{cat}(\mathcal{C}_{\Delta})$

where $C_{\Delta} = X \times X / \Delta(X)$ is the cofibre of $\Delta : X \to X \times X$.

Conjecture. (Dranishnikov) $TC^M(X) = cat(C_{\Delta})$.

・ロト・「聞・ 《聞・ 《聞・ 《曰・

Theorem. (A. Dranishnikov, 2012) I-S conjecture holds when

•
$$\dim(X) \le TC(X)(conn(X) + 1) - 2$$
.

• X is a Lie group.

Remark. If I-S conjecture holds, then for any space *X*,

 $\operatorname{TC}(X) \geq \operatorname{cat}(C_{\Delta})$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

where $C_{\Delta} = X \times X / \Delta(X)$ is the cofibre of $\Delta : X \to X \times X$.

Conjecture. (Dranishnikov) $TC^M(X) = cat(C_{\Delta})$.

Theorem. (A. Dranishnikov, 2012) I-S conjecture holds when

•
$$\dim(X) \le TC(X)(conn(X) + 1) - 2$$
.

• X is a Lie group.

Remark. If I-S conjecture holds, then for any space *X*,

$$\operatorname{TC}(X) \geq \operatorname{cat}(C_{\Delta})$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

where $C_{\Delta} = X \times X / \Delta(X)$ is the cofibre of $\Delta : X \to X \times X$.

Conjecture. (Dranishnikov) $TC^M(X) = cat(C_{\Delta})$.

TC, Sectional Category

Definition. (A. Schwarz, 1966) $secat(p : E \rightarrow B)$ is the least integer *n* such that *B* can be covered by *n* open sets on each of which *p* admits a (continuous) local section.

•
$$\operatorname{TC}(X) = \operatorname{secat}(\pi : X' \to X \times X)$$

• $\operatorname{cat}(X) = \operatorname{secat}(ev_1 : P_0 X \to X)$
where $P_0 X = \{\gamma \in X', \gamma(0) = *\}$.

• By requiring *homotopy* sections secat can be defined for any map and we have

$$TC(X) = secat(\Delta : X \to X \times X) \qquad cat(X) = secat(* \to X)$$
$$X \xrightarrow{c_{X}} X' \qquad * \xrightarrow{\sim} P_{0}X$$
$$\downarrow ev_{1}$$

TC, Sectional Category

Definition. (A. Schwarz, 1966) $secat(p : E \rightarrow B)$ is the least integer *n* such that *B* can be covered by *n* open sets on each of which *p* admits a (continuous) local section.

•
$$\operatorname{TC}(X) = \operatorname{secat}(\pi : X^{I} \to X \times X)$$

• $\operatorname{cat}(X) = \operatorname{secat}(ev_{1} : P_{0}X \to X)$
where $P_{0}X = \{\gamma \in X^{I}, \gamma(0) = *\}.$

• By requiring *homotopy* sections secat can be defined for any map and we have

$$TC(X) = secat(\Delta : X \to X \times X) \qquad cat(X) = secat(* \to X)$$
$$X \xrightarrow{c_{X}} X' \qquad * \xrightarrow{\sim} P_{0}X$$
$$\downarrow ev_{1}$$

TC, Sectional Category

Definition. (A. Schwarz, 1966) $secat(p : E \rightarrow B)$ is the least integer *n* such that *B* can be covered by *n* open sets on each of which *p* admits a (continuous) local section.

•
$$\operatorname{TC}(X) = \operatorname{secat}(\pi : X^{I} \to X \times X)$$

• $\operatorname{cat}(X) = \operatorname{secat}(ev_{1} : P_{0}X \to X)$
where $P_{0}X = \{\gamma \in X^{I}, \gamma(0) = *\}$.

• By requiring *homotopy* sections secat can be defined for any map and we have

$$TC(X) = secat(\Delta : X \to X \times X) \qquad cat(X) = secat(* \to X)$$
$$X \xrightarrow{c_{X}} X' \qquad * \xrightarrow{\sim} P_{0}X$$
$$X \xrightarrow{\sim} X \times X$$

The join of 2 fibrations $p: E \rightarrow B$ and $p': E' \rightarrow B$ is the map

$$E *_B E' := E \amalg (E \times_B E' \times [0,1]) \amalg E' / \sim \rightarrow B$$

 $\langle e, e', t \rangle \quad \mapsto \quad p(e) = p'(e')$

where
$$\sim$$
 is given by $(m{e},m{e}',t)\sim \left\{egin{array}{cc} m{e} & t=0\ m{e}' & t=1 \end{array}
ight.$

This map is a fibration with fibre

$$F * F' = F \amalg F imes F' imes [0, 1] \amalg F' / \sim$$

where *F* and *F'* are the respective fibres of *p* and *p'*.

For $p : E \to B$, consider $p_1 = p$ and, for $n \ge 2$, $p_n : J_n(p) = \underbrace{E *_B \cdots *_B E}_{n \text{ factors}} \to B$

Theorem. (A. Schwarz) If *B* is normal, then

 $secat(p) \le n \iff p_n$ admits a (continuous) section.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

For $p = \pi : X^{I} \rightarrow X \times X$:

Corollary. $TC(X) \le n \iff \pi_n : J_n(\pi) \to X \times X$ has a section.

For $p: E \rightarrow B$, consider

$$p_1 = p$$
 and, for $n \ge 2$, $p_n : J_n(p) = \underbrace{E *_B \cdots *_B E}_{n \text{ factors}} \to B$

Theorem. (A. Schwarz) If *B* is normal, then

 $\operatorname{secat}(p) \leq n \iff p_n$ admits a (continuous) section.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

For $p = \pi : X^{I} \rightarrow X \times X$:

Corollary. $\operatorname{TC}(X) \leq n \iff \pi_n : J_n(\pi) \to X \times X$ has a section.

Given a fibration $p: E \rightarrow B$, we have, for any *n*, a canonical diagram:

Theorem. (Dranishnikov) $TC^M(X) \le n$ iff

 $\pi_n: J_n(\pi) \to X \times X$ admits a section *s* such that $s\Delta = \lambda_n c_x$.

Given a fibration $p: E \rightarrow B$, we have, for any *n*, a canonical diagram:

Theorem. (Dranishnikov) $TC^M(X) \le n$ iff

 $\pi_n: J_n(\pi) \to X \times X$ admits a section *s* such that $s\Delta = \lambda_n c_x$.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Given a fibration $p: E \rightarrow B$, we have, for any *n*, a canonical diagram:

Theorem. (Dranishnikov) $TC^M(X) \le n$ iff

 $\pi_n : J_n(\pi) \to X \times X$ admits a section *s* such that $s\Delta = \lambda_n c_x$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Definition. (D-EH, 2012) The relative category of a fibration $p : E \to B$ is given by relcat(p) $\leq n :\iff p_n$ admits a section *s* such that $sp \simeq \lambda_n$.

Theorem. (D-EH) $\operatorname{secat}(p) \leq \operatorname{relcat}(p) \leq \operatorname{secat}(p) + 1$.

Conjecture. (D-EH) If p admits a homotopy retraction then

 $\operatorname{relcat}(p) = \operatorname{secat}(p).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

If $p = ev_1 : P_0X \rightarrow X$ we have

▲□▶▲□▶▲□▶▲□▶ □ のQで

- ev_1 has a homotopy retraction $(X \to * \xrightarrow{\sim} P_0 X)$
- D-EH conjecture holds.

For
$$p = \pi : X' \to X \times X$$

there is a homotopy retraction, for instance

 $X \times X \stackrel{pr_1}{\rightarrow} X \stackrel{c_{\chi}}{\rightarrow} X'$

we can prove that

 $\operatorname{relcat}(\pi) = \operatorname{TC}^{M}(X)$

Consequence. For $p = \pi : X^{T} \to X \times X$

D-EH conjecture = I-S conjecture

・ロト・日本・日本・日本・日本・日本

For
$$p = \pi : X' \to X \times X$$

• there is a homotopy retraction, for instance

$$X \times X \stackrel{\text{\it pr}_1}{\to} X \stackrel{c_{\chi}}{\to} X'$$

• we can prove that

$$\operatorname{relcat}(\pi) = \operatorname{TC}^{M}(X)$$

Consequence. For $p = \pi : X^{I} \rightarrow X \times X$

D-EH conjecture = I-S conjecture

・ロト・日本・日本・日本・日本・日本

For
$$p = \pi : X' \to X \times X$$

• there is a homotopy retraction, for instance

$$X \times X \stackrel{\text{\it pr}_1}{\to} X \stackrel{c_{\chi}}{\to} X'$$

we can prove that

$$\operatorname{relcat}(\pi) = \operatorname{TC}^{M}(X)$$

Consequence. For $p = \pi : X' \to X \times X$

D-EH conjecture = I-S conjecture

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem. D-EH conjecture holds after suspension.

Meaning: Suppose that

• *p* admits a homotopy retraction *r*

• $\Sigma p_n : \Sigma J_n(p) \to \Sigma(B)$ has a homotopy section *s*

then

 $\Sigma p_n : \Sigma J_n(p) \to \Sigma(B)$ admits a homotopy section \tilde{s} such that $\tilde{s}\Sigma p \simeq \Sigma \lambda_n$

Corollary. I-S conjecture holds after suspension.

Theorem. D-EH conjecture holds after suspension.

Meaning: Suppose that

- *p* admits a homotopy retraction *r*
- $\Sigma p_n : \Sigma J_n(p) \to \Sigma(B)$ has a homotopy section *s*

then

 $\Sigma p_n : \Sigma J_n(p) \to \Sigma(B)$ admits a homotopy section \tilde{s} such that $\tilde{s}\Sigma p \simeq \Sigma \lambda_n$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Corollary. I-S conjecture holds after suspension.

Theorem. D-EH conjecture holds after suspension.

Meaning: Suppose that

- p admits a homotopy retraction r
- $\Sigma p_n : \Sigma J_n(p) \to \Sigma(B)$ has a homotopy section *s*

then

 $\Sigma p_n : \Sigma J_n(p) \to \Sigma(B)$ admits a homotopy section \tilde{s} such that $\tilde{s}\Sigma p \simeq \Sigma \lambda_n$

Corollary. I-S conjecture holds after suspension.

・ロト・日本・日本・日本・日本・日本

Proof:

• Since $p: E \rightarrow B$ admits a homotopy retraction *r*, the sequence

$$E \xrightarrow{p} B \xrightarrow{q} C_p$$

splits after suspension:

$$\Sigma E \underbrace{\xrightarrow{\Sigma p}}_{\Sigma r} \Sigma B \underbrace{\xrightarrow{\Sigma q}}_{\nu} \Sigma C_p \qquad \nu \Sigma q + \Sigma p \Sigma r \simeq id$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof:

• Since $p: E \rightarrow B$ admits a homotopy retraction *r*, the sequence

$$E \xrightarrow{p} B \xrightarrow{q} C_p$$

splits after suspension:

$$\Sigma E \underbrace{\frac{\Sigma p}{\sum r}}_{\Sigma r} \Sigma B \underbrace{\frac{\Sigma q}{\nu}}_{\nu} \Sigma C_p \qquad \nu \Sigma q + \Sigma p \Sigma r \simeq id$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• If s is a homotopy section of Σp_n then

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

is a homotopy section of Σp_n such that $\tilde{s}\Sigma p \simeq \Sigma \lambda_n$

Theorem. $wTC(X) = wTC^{M}(X) = wcat(C_{\Delta})$ where:

• wcat $(C_{\Delta}) \leq n : \Leftrightarrow C_{\Delta} \stackrel{\Delta_n}{\to} (C_{\Delta})^n \to (C_{\Delta})^{\wedge n}$ is homotopically trivial.

- wTC(X) $\leq n :\Leftrightarrow X \times X \xrightarrow{\Delta_n} (X \times X)^n \to (C_{\Delta})^n \to (C_{\Delta})^{\wedge n}$ is homotopically trivial.
- wTC^{*M*}(*X*) $\leq n : \Leftrightarrow X \times X \to (C_{\Delta})^{\wedge n}$ is homotopically trivial rel. $\Delta(X)$.

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem. $wTC(X) = wTC^{M}(X) = wcat(C_{\Delta})$ where:

- wcat $(C_{\Delta}) \leq n : \Leftrightarrow C_{\Delta} \stackrel{\Delta_{0}}{\rightarrow} (C_{\Delta})^{n} \rightarrow (C_{\Delta})^{\wedge n}$ is homotopically trivial.
- wTC(X) $\leq n :\Leftrightarrow X \times X \xrightarrow{\Delta_n} (X \times X)^n \to (C_{\Delta})^n \to (C_{\Delta})^{\wedge n}$ is homotopically trivial.
- wTC^{*M*}(*X*) $\leq n : \Leftrightarrow X \times X \to (C_{\Delta})^{\wedge n}$ is homotopically trivial rel. $\Delta(X)$.

Theorem. $wTC(X) = wTC^{M}(X) = wcat(C_{\Delta})$ where:

- wcat(\mathcal{C}_{Δ}) $\leq n :\Leftrightarrow \mathcal{C}_{\Delta} \xrightarrow{\Delta_{\ell}} (\mathcal{C}_{\Delta})^n \to (\mathcal{C}_{\Delta})^{\wedge n}$ is homotopically trivial.
- wTC(X) $\leq n :\Leftrightarrow X \times X \xrightarrow{\Delta_n} (X \times X)^n \to (C_{\Delta})^n \to (C_{\Delta})^{\wedge n}$ is homotopically trivial.
- wTC^{*M*}(*X*) $\leq n : \Leftrightarrow X \times X \to (C_{\Delta})^{\wedge n}$ is homotopically trivial rel. $\Delta(X)$.

Theorem. $wTC(X) = wTC^{M}(X) = wcat(C_{\Delta})$ where:

- wcat(\mathcal{C}_{Δ}) $\leq n :\Leftrightarrow \mathcal{C}_{\Delta} \xrightarrow{\Delta_n} (\mathcal{C}_{\Delta})^n \to (\mathcal{C}_{\Delta})^{\wedge n}$ is homotopically trivial.
- wTC(X) $\leq n :\Leftrightarrow X \times X \xrightarrow{\Delta_n} (X \times X)^n \to (C_{\Delta})^n \to (C_{\Delta})^{\wedge n}$ is homotopically trivial.
- wTC^{*M*}(*X*) $\leq n : \Leftrightarrow X \times X \to (C_{\Delta})^{\wedge n}$ is homotopically trivial rel. $\Delta(X)$.

Rational Homotopy Theory

• Sullivan (contravariant) functor of polynomial forms: A_{PL} : $TOP \rightarrow CDGA$ (comm. diff. grad. algebra)

- If X is simply-connected and of finite type then A_{PL}(X) contains all rational homotopy information about X.
- In particular, $H(A_{PL}(X)) = H^*(X; \mathbb{Q})$.
- Model of X in CDGA: (A, d) weakly equivalent to $A_{PL}(X)$:

$$(A, d) \xrightarrow{\sim} \bullet \xleftarrow{\sim} \cdots \xleftarrow{\sim} A_{PL}(X)$$

- Sullivan (contravariant) functor of polynomial forms: A_{Pl} : $TOP \rightarrow CDGA$ (comm. diff. grad. algebra)
 - If X is simply-connected and of finite type then A_{PL}(X) contains all rational homotopy information about X.
 - In particular, $H(A_{PL}(X)) = H^*(X; \mathbb{Q})$.
- Model of X in CDGA: (A, d) weakly equivalent to $A_{PL}(X)$:

$$(A, d) \xrightarrow{\sim} \bullet \xleftarrow{\sim} \cdots \xleftarrow{\sim} A_{PL}(X)$$

• Sullivan (contravariant) functor of polynomial forms:

 A_{PL} : TOP \rightarrow CDGA (comm. diff. grad. algebra)

- If X is simply-connected and of finite type then $A_{PL}(X)$ contains all rational homotopy information about X.
- In particular, $H(A_{PL}(X)) = H^*(X; \mathbb{Q})$.
- Model of X in CDGA: (A, d) weakly equivalent to $A_{PL}(X)$:

$$(A, d) \xrightarrow{\sim} \bullet \xleftarrow{\sim} \cdots \xleftarrow{\sim} A_{PL}(X)$$

• Sullivan (contravariant) functor of polynomial forms:

 A_{PL} : TOP \rightarrow CDGA (comm. diff. grad. algebra)

- If X is simply-connected and of finite type then A_{PL}(X) contains all rational homotopy information about X.
- In particular, $H(A_{PL}(X)) = H^*(X; \mathbb{Q})$.
- Model of X in CDGA: (A, d) weakly equivalent to $A_{PL}(X)$:

$$(A,d) \xrightarrow{\sim} \bullet \xleftarrow{\sim} \cdots \xleftarrow{\sim} A_{PL}(X)$$

• Sullivan (contravariant) functor of polynomial forms:

 A_{PL} : TOP \rightarrow CDGA (comm. diff. grad. algebra)

- If X is simply-connected and of finite type then A_{PL}(X) contains all rational homotopy information about X.
- In particular, $H(A_{PL}(X)) = H^*(X; \mathbb{Q})$.
- Model of X in CDGA: (A, d) weakly equivalent to $A_{PL}(X)$:

$$(A,d) \xrightarrow{\sim} \bullet \xleftarrow{\sim} \cdots \xleftarrow{\sim} A_{PL}(X)$$

Definition.

• $\operatorname{secat}_0(p) \le n$ if $A_{PL}(p_n)$ admits a homotopy retraction in *CDGA*.

 relcat₀(p) ≤ n if A_{PL}(p_n) admits (in CDGA) a homotopy retraction τ such that A_{PL}(p)τ ≃ A_{PL}(λ_n).

For $p = \pi : X^{I} \to X \times X$ we use the notation $TC_{0}(X)$, $TC_{0}^{M}(X)$.

・ロト・西ト・西ト・日下 ひゃつ

Definition.

- $\operatorname{secat}_0(p) \le n$ if $A_{PL}(p_n)$ admits a homotopy retraction in *CDGA*.
- relcat₀(p) ≤ n if A_{PL}(p_n) admits (in CDGA) a homotopy retraction τ such that A_{PL}(p)τ ≃ A_{PL}(λ_n).

For $p = \pi : X^{I} \to X \times X$ we use the notation $TC_{0}(X)$, $TC_{0}^{M}(X)$.

もりゃん 聞き 本語を 不聞や 不日を

Definition.

- $\operatorname{secat}_0(p) \le n$ if $A_{PL}(p_n)$ admits a homotopy retraction in *CDGA*.
- relcat₀(p) ≤ n if A_{PL}(p_n) admits (in CDGA) a homotopy retraction τ such that A_{PL}(p)τ ≃ A_{PL}(λ_n).

For $p = \pi : X^{I} \to X \times X$ we use the notation $TC_{0}(X)$, $TC_{0}^{M}(X)$.

もりゃん 聞き 本語を 不聞や 不日を

Definition.

- $\operatorname{secat}_0(p) \le n$ if $A_{PL}(p_n)$ admits a homotopy retraction in *CDGA*.
- relcat₀(p) ≤ n if A_{PL}(p_n) admits (in CDGA) a homotopy retraction τ such that A_{PL}(p)τ ≃ A_{PL}(λ_n).

For $p = \pi : X' \to X \times X$ we use the notation $TC_0(X)$, $TC_0^M(X)$.

If $p : E \rightarrow B$ admits a homotopy retraction $r : B \rightarrow E$ we have:

Theorem. D-EH conjecture holds at the level of $A_{PL}(E)$ -modules.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Theorem. (J. Carrasquel, 2012) Let $\varphi : (A, d) \rightarrow (C, d)$ be a surjective model of *p*. If the projection

$$(\mathbf{A},\mathbf{d}) \to (\mathbf{A}/(\ker \varphi)^n, \bar{\mathbf{d}})$$

admits a homotopy retraction in *CDGA* then $secat_0(p) \le n$.

• For $p = \pi : X^{I} \rightarrow X \times X$: consider the multiplication

 $\mu : \Lambda V \otimes \Lambda V \to \Lambda V$ ($\Lambda V, d$) Sullivan model of X

If $\Lambda V \otimes \Lambda V \to \Lambda V \otimes \Lambda V / (\ker \mu)^n$ admits a htpy retraction then $TC_0(X) \le n$. (B. Jessup, P.-E. Parent, A. Murillo, 2012)

• (Y. Félix, S. Halperin, 1982) For $p = ev_1 : P_0X \rightarrow X$:

 $\operatorname{cat}_0 X \leq n \Leftrightarrow \Lambda V \to \Lambda V / (\ker \varepsilon)^n$ has a htpy retraction

 $\varepsilon : \Lambda V \to \mathbb{Q}$ is the augmentation.

Theorem. (J. Carrasquel, 2012) Let $\varphi : (A, d) \rightarrow (C, d)$ be a surjective model of *p*. If the projection

$$(\mathbf{A},\mathbf{d}) \to (\mathbf{A}/(\ker \varphi)^n, \bar{\mathbf{d}})$$

admits a homotopy retraction in *CDGA* then $secat_0(p) \le n$.

• For $p = \pi : X^{I} \rightarrow X \times X$: consider the multiplication

 $\mu : \Lambda V \otimes \Lambda V \to \Lambda V$ ($\Lambda V, d$) Sullivan model of X

If $\Lambda V \otimes \Lambda V \rightarrow \Lambda V \otimes \Lambda V/(\ker \mu)^n$ admits a htpy retraction then $TC_0(X) \leq n$. (B. Jessup, P.-E. Parent, A. Murillo, 2012)

• (Y. Félix, S. Halperin, 1982) For $p = ev_1 : P_0X \rightarrow X$:

 $\operatorname{cat}_0 X \leq n \Leftrightarrow \Lambda V \to \Lambda V / (\ker \varepsilon)^n$ has a htpy retraction

 $\varepsilon : \Lambda V \to \mathbb{Q}$ is the augmentation.

Theorem. (J. Carrasquel, 2012) Let $\varphi : (A, d) \rightarrow (C, d)$ be a surjective model of *p*. If the projection

$$(\mathbf{A},\mathbf{d}) \to (\mathbf{A}/(\ker \varphi)^n, \bar{\mathbf{d}})$$

admits a homotopy retraction in *CDGA* then $secat_0(p) \le n$.

• For $p = \pi : X' \to X \times X$: consider the multiplication

 $\mu : \Lambda V \otimes \Lambda V \to \Lambda V$ ($\Lambda V, d$) Sullivan model of X

If $\Lambda V \otimes \Lambda V \rightarrow \Lambda V \otimes \Lambda V/(\ker \mu)^n$ admits a htpy retraction then $TC_0(X) \leq n$. (B. Jessup, P.-E. Parent, A. Murillo, 2012)

• (Y. Félix, S. Halperin, 1982) For $p = ev_1 : P_0X \rightarrow X$:

 $\operatorname{cat}_0 X \leq n \Leftrightarrow \Lambda V \to \Lambda V / (\ker \varepsilon)^n$ has a htpy retraction

 $\varepsilon : \Lambda V \to \mathbb{Q}$ is the augmentation.

Corollary. Let φ be a surjective model of p. We have $\operatorname{secat}_0(p) \leq \operatorname{nil}(\ker \varphi) + 1$

In particular, If (A, d) is a model of X with multiplication $\mu_A : A \otimes A \rightarrow A$ then

 $\operatorname{TC}_0(X) \leq \operatorname{nil} \ker \mu_A + 1.$

Corollary. Let φ be a surjective model of p. We have

 $\operatorname{secat}_0(p) \leq \operatorname{nil}(\ker \varphi) + 1$

In particular, If (A, d) is a model of X with multiplication $\mu_A : A \otimes A \rightarrow A$ then

 $TC_0(X) \leq nil \ker \mu_A + 1.$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Theorem. Let φ a surjective model of p. We have $\operatorname{secat}_0(p) \leq \operatorname{relcat}_0(p) \leq \operatorname{nil}(\ker \varphi) + 1.$

Corollary. If (A, d) is a model of X with multiplication μ_A then $TC_0(X) \le TC_0^M(X) \le nil \ker \mu_A + 1.$

In particular, if there exists a model (A, d) of X such that

 $TC_0(X) = nil \ker \mu_A + 1$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

then $TC_0(X) = TC_0^M(X)$.

Theorem. Let φ a surjective model of *p*. We have

$$\operatorname{secat}_0(\rho) \leq \operatorname{relcat}_0(\rho) \leq \operatorname{nil}(\ker \varphi) + 1.$$

Corollary. If (A, d) is a model of X with multiplication μ_A then $TC_0(X) \le TC_0^M(X) \le nil \ker \mu_A + 1.$

In particular, if there exists a model (A, d) of X such that

 $TC_0(X) = nil \ker \mu_A + 1$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

then $TC_0(X) = TC_0^M(X)$.

Theorem. Let φ a surjective model of *p*. We have

$$\operatorname{secat}_0(\rho) \leq \operatorname{relcat}_0(\rho) \leq \operatorname{nil}(\ker \varphi) + 1.$$

Corollary. If (A, d) is a model of X with multiplication μ_A then $TC_0(X) \le TC_0^M(X) \le nil \ker \mu_A + 1.$

In particular, if there exists a model (A, d) of X such that

$$TC_0(X) = nil \ker \mu_A + 1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

then $TC_0(X) = TC_0^M(X)$.

- L. Lechuga, A. Murillo (2007)
- B. Jessup, P.-E. Parent, A. Murillo (2012)
- P. Ghienne, L. Fernández, T. Kahl, L. V. (2006)

we can state that I-S conjecture holds rationnally for:

• formal spaces:
$$(H^*(X), 0)$$
 is a model

 $\operatorname{nil} ker \cup + 1 \leq \mathrm{TC}_0 \leq \mathrm{TC}_0^M \leq \operatorname{nil} ker \cup + 1$

spaces whose rational homotopy is concentrated in odd degrees

nil ker
$$\cup$$
 + 1 = TC₀ = TC₀^M = nil ker $\mu_{\Lambda V}$ + 1

• for the (non formal) space $X = S^3_a \vee S^3_b \cup_{[a,[a,b]]} e^8 \cup_{[b,[a,b]]} e^8$.

nil ker \cup + 1 = 3 MTC = TC₀ = 4 = nil ker μ_A + 1

and
$$TC_0(X) = TC_0^M(X)$$
.

・ロ・・聞・・用・・日・ のくの

- L. Lechuga, A. Murillo (2007)
- B. Jessup, P.-E. Parent, A. Murillo (2012)
- P. Ghienne, L. Fernández, T. Kahl, L. V. (2006)

we can state that I-S conjecture holds rationnally for:

• formal spaces: $(H^*(X), 0)$ is a model

 $\operatorname{nil} \text{ker} \cup +1 \leq \operatorname{TC}_0 \leq \operatorname{TC}_0^M \leq \operatorname{nil} \text{ker} \cup +1$

spaces whose rational homotopy is concentrated in odd degrees

nil ker \cup + 1 = TC₀ = TC₀^M = nil ker $\mu_{\Lambda V}$ + 1

• for the (non formal) space $X = S_a^3 \vee S_b^3 \cup_{[a,[a,b]]} e^8 \cup_{[b,[a,b]]} e^8$.

nil ker \cup + 1 = 3 MTC = TC₀ = 4 = nil ker μ_A + 1

and $TC_0(X) = TC_0^M(X)$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへぐ

- L. Lechuga, A. Murillo (2007)
- B. Jessup, P.-E. Parent, A. Murillo (2012)
- P. Ghienne, L. Fernández, T. Kahl, L. V. (2006)

we can state that I-S conjecture holds rationnally for:

• formal spaces: $(H^*(X), 0)$ is a model

 $\operatorname{nil} \text{ker} \cup +1 \leq \operatorname{TC}_0 \leq \operatorname{TC}_0^M \leq \operatorname{nil} \text{ker} \cup +1$

spaces whose rational homotopy is concentrated in odd degrees

nil ker
$$\cup$$
 + 1 = TC₀ = TC₀^M = nil ker $\mu_{\Lambda V}$ + 1

• for the (non formal) space $X = S^3_a \vee S^3_b \cup_{[a,[a,b]]} e^8 \cup_{[b,[a,b]]} e^8$.

nil ker \cup + 1 = 3 MTC = TC₀ = 4 = nil ker μ_A + 1

and $TC_0(X) = TC_0^M(X)$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへぐ

- L. Lechuga, A. Murillo (2007)
- B. Jessup, P.-E. Parent, A. Murillo (2012)
- P. Ghienne, L. Fernández, T. Kahl, L. V. (2006)

we can state that I-S conjecture holds rationnally for:

• formal spaces: $(H^*(X), 0)$ is a model

 $\operatorname{nil} \text{ker} \cup + 1 \leq \operatorname{TC}_0 \leq \operatorname{TC}_0^M \leq \operatorname{nil} \text{ker} \cup + 1$

spaces whose rational homotopy is concentrated in odd degrees

nil ker
$$\cup$$
 + 1 = TC₀ = TC₀^M = nil ker $\mu_{\Lambda V}$ + 1

• for the (non formal) space $X = S^3_a \vee S^3_b \cup_{[a,[a,b]]} e^8 \cup_{[b,[a,b]]} e^8$.

$$\operatorname{nil} \ker \cup +1 = 3 \qquad \operatorname{MTC} = \operatorname{TC}_0 = 4 = \operatorname{nil} \ker \mu_A + 1$$

and
$$TC_0(X) = TC_0^M(X)$$
.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQで

Remarks

• (N. Dupont, 1999) There exists a CW-complex X such that

 $\operatorname{cat}_0(X) < \operatorname{nil} \ker \varepsilon_A + 1$

where $\varepsilon_A : A \to \mathbb{Q}$ is the augmentation of any model (A, d) of X.

(O. Cornea, Y. Félix, S. Halperin, 1998) If X is a Poincaré duality complex then there exists a model (A, d) of X such that

 $\operatorname{cat}_0(X) = \operatorname{nil} \ker \varepsilon_A + 1$