
Synchrony Weakened by Message Adversaries

vs Asynchrony Restricted by Failure Detectors

Michel R AYNAL ⋆,† Julien S TAINER†

⋆ Institut Universitaire de France
† IRISA, Université de Rennes, France

Message adversaries vs failure detectors 1



Table of content

• Multiplicity of DC models

• Basic computation unit in DC

• Synchronous systems weakened by with message adversaries

• Asynchronous systems enriched with failure detectors

• The map: Establishing a hierarchy and equivalences

• Conclusion

Message adversaries vs failure detectors 2



Buzzwords or fundamental concepts??

Synchronous system, Failure, process crash, Lossy link,
Asynchronous system, Distributed oracle, Reliable broadcast,

Message adversary, Survivor set, Quorum, FLP, Consensus,Safety,
Failure detector, Eventual leader, Total order broadcast, Core set,

Weakest failure detector, Uniform property, Message pattern,
Eventual synchrony, Recurrent link, Quiescent communication,
Indulgent algorithm, Assumption coverage, Progress condition,
DC Problem, Graceful degradation, Source, Dynamic system,
Solo execution, t-Resilience, Iterated model, Wait-freedom,

..., etc., ...

A jungle? Some unity? jewels inside?

Is it possible to add “some order” to better understand?

Message adversaries vs failure detectors 3



RETURNING to The BASICS

From SEQUENTIAL COMPUTING
to DISTRIBUTED COMPUTING

Message adversaries vs failure detectors 4



Sequential computing

• Basic computation unit: function f(x)

x y = f(x)f

• Hierarchy: FSA ⊂ Pushdown automata ⊂ Turing machines

• Equivalences (examples):

⋆ Regular languages ≃ FSA ≃ ND-FSA
⋆ Turing machines ≃ Lambda calculus ≃ Post’s system

Message adversaries vs failure detectors 5



The world of distributed systems

• Time: Synchronous vs asynchronous systems

• Communication: shared memory vs message-passing

• Evolution: Static vs dynamic

• Failures

⋆ What is concerned: process, link, or both

⋆ Types of failures (crash, crash/recovery, omission, arbitrary)

This generates a multiplicity of DC models

Message adversaries vs failure detectors 6



Basic computation unit in DC: The notion of a task

The DC counterpart of a function

ini
pi

Output vector O[1..n]

outi

Input vector I[1..n]

O[i] = outiI[i] = ini

IndividualIndividual
Inputs Output

Message adversaries vs failure detectors 7



Formal definition

• A decision task T is a triple (I,O,∆)

⋆ I: set of input vectors (of size n)

⋆ O: set of output vectors (of size n)

⋆ ∆: relation from I into O: ∀I ∈ I : ∆(I) ⊆ O

• I[i]: private input of pi

• O[i]: private output of pi

• ∀I ∈ I:
∆(I) defines the set of output vectors that can be decided from
the input vector I

Message adversaries vs failure detectors 8



Solving a task

A distributed algorithm A is a set of n local automata (Turing ma-
chines) that cooperate through specific communication objects (e.g.,
message-passing network, shared memory, etc.)

The set of automata is fixed (not a dynamic system with churn, etc.)

An algorithm A solves a task T if in any run

• ∀ I ∈ I such that each pi starts with (proposes) ini = I[i]

• ∃ O ∈∆(I) such that outj = O[j] for each process pj that that
computes (decides) an output outj

Message adversaries vs failure detectors 9



Examples of tasks

• Consensus and k-set agreement

⋆ Binary consensus:

I = {all vectors of 0 and 1}

O =
{

{0, . . . ,0}, {1, . . . ,1}
}

Let X0 = {0, . . . ,0} and X0 = {1, . . . ,1}

∆(any vector but XO, X1) = O
∆(X0) = {0, . . . ,0} and ∆(X1) = {1, . . . ,1}.

• Renaming, Weak symmetry breaking

• k-Simultaneous consensus, Etc.

Message adversaries vs failure detectors 10



Type of a task

• Colorless: In any run, the input (output) value of a process can
be the input (output) of any other process

⋆ Example: consensus, k-set agreement

• Colored: symmetry breaking tasks

⋆ Example: Renaming problem, Weak symmetry breaking

Message adversaries vs failure detectors 11



AIM of the PAPER

Message adversaries vs failure detectors 12



• A lot of papers:
have introduced new models and investigated which pbs can be
solved in each of these models

• This paper:
does not introduce new DC model, but establish a hierarchy and
equivalences between existing models

Message adversaries vs failure detectors 13



the basic figure

Reliable MP communication
(n− 1) processes may crash No process crash

Msg adversary-based weakeningFD-based enrichment

When considering any colorless task: where do the models meet?

Reliable communication
Communication: MP or RW

Aynchrony Synchrony

Message adversaries vs failure detectors 14



On the side of asynchronous models

the paper considers the following models

Message adversaries vs failure detectors 15



Asynchronous models

• n asynchronous processes

• up to (n− 1) processes may crash

• Communication: reliable and

⋆ Asynchronous msg-passing, point-to-point complete network

⋆ Or Read/Write shared memory

• notation:

⋆ MP: AMPn,n−1[fd : ∅] vs AMPn,n−1[fd : FD]

⋆ RW: ARWn,n−1[fd : ∅] vs ARWn,n−1[fd : FD]

Message adversaries vs failure detectors 16



Asynchronous MP or RW model enriched with FD Ω

Eventual leader failure detector Ω

• Let C = the set of non-faulty processes

• Each process pi has a read-only local variable leaderi such that

⋆ leaderi always contains a process identity (validity), and

⋆ there is an unknown but finite time τ and a process identity
ℓ ∈ C such that ∀τ ′ ≥ τ : (i ∈ C)⇒ (leaderτ

′

i = ℓ) (eventual
convergence)

• Notation: AMPn,n−1[fd : Ω] and ARWn,n−1[fd : Ω]

- Chandra T., Hadzilacos V. and Toueg S., The weakest failure detector for solving consensus.
Journal of the ACM, 43(4):685-722, 1996

Message adversaries vs failure detectors 17



Asynchronous MP model enriched with Failure Detectors Σ

Quorum failure detector Σ

• Each process pi has a read-only local variable qri such that

⋆ qri always contains a non-∅ set of process identities (validity)

⋆ ∀τ, τ ′, ∀i, j: qrτi ∩ qrτ
′

j 6= ∅ (intersection property)

⋆ ∀i ∈ C : ∃τ : ∀τ ′ ≥ τ : qrτ
′

i ⊆ C (liveness property)

• Notation: AMPn,n−1[fd : Σ]

- Delporte-Gallet C., Fauconnier H., and Guerraoui R., Tight failure detection bounds on atomic
object implementations. Journal of the ACM, 57(4), Article 22, 2010

Message adversaries vs failure detectors 18



Asynchronous shared memory models

• Basic model: ARWn,n−1[fd : ∅]

⋆ n asynchronous processes

⋆ up to (n− 1) may crash

⋆ communication through atomic read/write registers

• Enrched model ARWn,n−1[fd : Ω]

Message adversaries vs failure detectors 19



On the side of synchronous models

the paper considers the following models

Message adversaries vs failure detectors 20



Basic reliable synchronous model

• n processes

• no process failure

• Synchronous msg-passing, point-to-point complete network

• Round-based computation:

⋆ at every round, each process sends a msg to all
⋆ ∀ msg: received in the very same round in which it is sent

• Notation SMPn[adv : ∅]

• Remark: due to synchrony assumption, the progress condition
in this model is inherently wait-freedom

Message adversaries vs failure detectors 21



The notion of a message adversary

• Power of an adversary:

at any round the adversary can suppress messages

• Weakening the power of an adversary:

The power of an adversary can be restricted by imposing con-
straints (properties) on it behavior

⋆ at one extreme it is not allowed to suppress messages,
⋆ at the other extreme it is allowed to suppress all messages at

every round

⋆ and in between: it exists plenty of adversaries!

Message adversaries vs failure detectors 22



The T -connectivity adversary

• T -interval connectivity: for any T consecutive rounds there a
connected subgraph on which the adversary does not suppress
messages

• T = 1: the minimal communication graph left by the adversary
at every round is connected (it is consequently a spanning tree)
but it change arbitrarily at every round

• notation: SMPn[adv :T-connectivity]

Any computable function can be computed in this synchr model

- Kuhn F., Lynch N.A., and Oshman R., Distributed computation in dynamic networks. Proc. 42nd
ACM Symposium on Theory of Computing (STOC’10), ACM press, pp. 513-522, 2010

Message adversaries vs failure detectors 23



Afek-Gafni’s message adversaries

• TOUR (tournament): at every round, the adversary can sup-
press one message on each link but not both

• PAIRS: (1) At each round, the adversary can suppress all mes-
sages except one message, and (2) on k consecutive rounds
(e.g., k = n(n−1)

2 ) each link is selected for the non-suppression

• TP: At each round, there is a directed path connecting all pro-
cesses on which messages are not suppressed

• SMPn[adv : TOUR], SMPn[adv : PAIRS], SMPn[adv :
TP] have the same computability power for task solvability

- Afek Y. and Gafni E., Asynchrony from synchrony. Proc. Int’l Conference on Distributed Comput-
ing and Networking (ICDCN’13), Springer LNCS 7730, pp. 225-239, 2013.

Message adversaries vs failure detectors 24



CONTENT of the PAPER

Message adversaries vs failure detectors 25



Model equivalences?

• Distributed computing models:

⋆ Asynchrony (RW or MP), process crashes, reliable communi-
cation, possibly enriched with failure detectors

⋆ Synchrony (MP), reliable processes, message losses (adver-
saries)

• Afek-Gafni 2013: SMPn[adv : TOUR]≃T ARWn,n−1[fd : ∅]

• More generally: How all these models are related??

Message adversaries vs failure detectors 26



Introduction of two new adversaries

• SOURCE:
There are a process ps and a round r0, such that, at every round
r ≥ r0, the adversary does not suppress the message sent by
ps to the other processes

• QUORUM: Given any pair of processes pi and pj:
⋆ whatever the synchronous rounds ri and rj executed by pi

and pj, there is a process pk whose messages to pi at round
ri and to pj at round rj are not eliminated by the adversary
(intersection property)

⋆ there is at least one process whose messages are infinitely
often received by each other process (liveness property)

Message adversaries vs failure detectors 27



Content of the paper: Hierarchy and equivalences

SMPn[adv : ∅]≃M AMPn,0[fd : ∅]≃M ARWn,0[fd : ∅]

SMPn[adv :∞]≃T AMPn,n−1[fd : ∅]

SMPn[adv : SOURCE]≃T AMPn,n−1[fd : Ω]

SMPn[adv : SOURCE, QUORUM]≃T AMPn,n−1[fd : Σ, Ω]

SMPn[adv : SOURCE, TOUR]≃T ARWn,n−1[fd : Ω]

SMPn[adv : TOUR]≃T ARWn,n−1[fd : ∅]

Section 5

Section 6

Section 3

Section 4

Section 2

Afek-Gafni

SMPn[adv : QUORUM]≃T AMPn,n−1[fd : Σ]

Message adversaries vs failure detectors 28



Content of the paper

• The paper contains plenty reductions

• A few are easy, the others are not!

• On model-dependent notions

⋆ notion of non-faulty process in AMPn,n−1[fd : FD] vs

⋆ notion of terminating process in SMPn[adv : AD]

Message adversaries vs failure detectors 29



A remark on consensus

• The weakest FD to solve consensus in ARWn,n−1[fd : ∅] is Ω

• we have (this equivalence is for colorless tasks)
SMPn[adv : SOURCE, TOUR] ≃T ARWn,n−1[fd : Ω]

• But, this does not allow us to conclude that the adversary defined
by the constraints SOURCE + TOUR is the weakest adversary
to solve consensus in SMPn[adv : ∅]

Message adversaries vs failure detectors 30



A FEW REDUCTIONS

Message adversaries vs failure detectors 31



Reductions involving QUORUM

• QUORUM: Given any pair of processes pi and pj:
⋆ whatever the synchronous rounds ri and rj executed by pi

and pj, there is a process pk whose messages to pi at round
ri and to pj at round rj are not eliminated by the adversary
(intersection property)

⋆ there is at least one process whose messages are infinitely
often received by each other process (liveness property)

•
[

∀ i, j : ∀ ri, rj : ({k : k
ri−→ i} ∩ {k : k

rj
−→ j} 6= ∅)

]

∧ (SC 6= ∅)

• QUORUM in SMPn[adv : ∅]captures Σ in AMPn,n−1[fd : ∅]

Message adversaries vs failure detectors 32



From AMPn,n−1[fd : Σ] to SMPn[adv : QUORUM] (1)

initialization
ri ← 0;
sim rec msgsi[1, . . . , n]← [⊥, . . . ,⊥];
(msgs to sendi[1, . . . , n], ls statei)

← simulate(sim rec msgsi);
for each r > 0

do rec msgsi[r][1, . . . , n]← [⊥, . . . ,⊥] end for .

when (r,m) received from pj: rec msgsi[r][j]← m.

Message adversaries vs failure detectors 33



From AMPn,n−1[fd : Σ] to SMPn[adv : QUORUM] (2)

repeat forever
ri← ri +1;
for each j ∈ {1, . . . , n}

do send(ri,msgs to sendi[j]) to pj end for ;
repeat cur qri← qri

until (∀j ∈ cur qri \ {i} : rec msgsi[ri][j] 6= ⊥)
end repeat ;
for each j ∈ cur qri

do sim rec msgsi[j]← rec msgsi[ri][j] end for ;
(msgs to sendi[1, . . . , n], ls statei)

← simulate(sim rec msgsi);
sim rec msgsi[1, . . . , n]← [⊥, . . . ,⊥]

end repeat.

Message adversaries vs failure detectors 34



From SMPn[adv : QUORUM] to AMPn,n−1[fd : Σ] (1)

initialization
ls statei ← initial state of the local simulated algorithm;
msgs to reci← ∅;
msgs receivedi← ∅;
(msgs to sendi, ls statei)← simulate(ls statei,msgs to reci);
rec fromi ← {1, . . . , n};
viewi← msgs to sendi.

viewi = { messages that have been sent, to pi’s knowledge }

when qri is read : return(rec fromi).

Message adversaries vs failure detectors 35



From SMPn[adv : QUORUM] to AMPn,n−1[fd : Σ] (2)

round r = 1,2, · · · do :
send(i, viewi) to each other process;
rec msgsi ← set of pairs (j, view j) received during this round;
viewi← viewi ∪

(

⋃

(j,view j)∈rec msgsi
view j

)

;
rec fromi ←

{

j ∈ {1, . . . , n} : ∃(j, view j) ∈ rec msgsi
}

∪ {i};
if (msgs to sendi ∈

⋂

(j,view j)∈rec msgsi
view j) then

msgs to reci← msgs to reci ∪
{(j, i,m) : (j, view j) ∈ rec msgsi ∧ (j, i,m) ∈ view j};

(msgs to sendi, ls statei)←
simulate(ls statei,msgs to reci \msgs receivedi);

msgs receivedi← msgs to reci;
viewi← viewi ∪msgs to sendi

end if .

Message adversaries vs failure detectors 36



Relating SMPn[adv : QUORUM] to AMPn,n−1[fd : Σ]

Theorem: Let T be a colorless task:

T can be solved in SMPn[adv : QUORUM]
⇐⇒

T be solved in AMPn,n−1[fd : Σ]

Message adversaries vs failure detectors 37



Simulators and simulated processes (1)

• Model AMPn,n−1[fd : ∅]: correct vs faulty processes

• Model SMPn[adv : ∅]: strongly vs weakly correct processes

⋆ Strongly correct: a process whose an infinite number of mes-
sages are eventually received (directly or indiredctly) by the
other processes

⋆ Weakly correct: the other processes

• From SMPn[adv : QUORUM] to AMPn,n−1[fd : Σ]

⋆ Strongly correct simulator→ correct simulated process

⋆ Weakly correct simulator → faulty simulated process

Message adversaries vs failure detectors 38



Simulators and simulated processes (2)

• From AMPn,n−1[fd : ∅] to SMPn[adv : ∅]

⋆ Faulty simulator → weakly correct process

⋆ Correct simulator →

∗ strongly correct process or
∗ weakly correct process

This depends on the reduction

Message adversaries vs failure detectors 39



From RW + Omega to SOURCE + TOUR (1)

From ARWn,n−1[fd : Ω] to SMPn[adv : SOURCE, TOUR]

• ri ← 0: simulated round number

• ls statei ← simulated initial state at pi

• msgs to sendi[1..n]← initial msgs to send to each process

• ∀r > 0 : MEM [i][r][1..n] init to [⊥, ...,⊥]

Message adversaries vs failure detectors 40



From RW + Omega to SOURCE + TOUR (2)

From ARWn,n−1[fd : Ω] to SMPn[adv : SOURCE, TOUR]

repeat forever
ri ← ri +1;
repeat leader vali← MEM [leaderi][ri][i]

until (leader vali 6= ⊥) ∨ (leaderi = i)
end repeat ;
MEM [i][ri]← msgs to sendi;
rec msgsi[1..n]← MEM [1..n][ri][i];
(msgs to sendi, ls statei)← simulate(ls statei, rec msgsi)

end repeat.

Message adversaries vs failure detectors 41



The other reductions

• They are (much) more involved

• See the paper

• Proofs: not always easy

Message adversaries vs failure detectors 42



To conclude : what do have we learn?

• Main result: A hierarchy and a set of non-trivial equivalences

• A question: Is it possible to discover a unifying model that would
includes a lot of known specific DC models

• The ultimate goal (a DC’s Holy Grail??)

What is the the Grand Unified Model of DC!

(similar to the “Grand Unified Theory” in Physics)

Message adversaries vs failure detectors 43


