
Distributed Collaborative Editing

LSEQ: an Adaptive Distributed Sequence Data
Structure

On the Fly Order Preserving Object Renaming

Achour Mostefaoui

joint work with Emmanuel Desmontils, Pascal Molli and Brice Nédelec

Distributed Collaborative Editors

1

Distributed Collaborative Editors

1 Across space, time, organizations.

2 Two phases :

a locally prepare operations to send
b execute remote operations

3 Operational transform

+ local operations cheap
– remote operations complex

4 Conflict-free Replicated Data Type

2 phases share computational cost

Distributed Collaborative editors

Optimistic replication

CRDT OT

Google Docs CoVim

↗ collaborators ⇒ quadratic ↗ remote operations

2

Distributed Collaborative Editors

1 Across space, time, organizations.

2 Two phases :

a locally prepare operations to send
b execute remote operations

3 Operational transform

+ local operations cheap
– remote operations complex

4 Conflict-free Replicated Data Type

2 phases share computational cost

Distributed Collaborative editors

Optimistic replication

CRDT OT

Google Docs CoVim

↗ collaborators ⇒ quadratic ↗ remote operations

2

Distributed Collaborative Editors

1 Across space, time, organizations.

2 Two phases :

a locally prepare operations to send
b execute remote operations

3 Operational transform

+ local operations cheap
– remote operations complex

4 Conflict-free Replicated Data Type

2 phases share computational cost

Distributed Collaborative editors

Optimistic replication

CRDT OT

Google Docs CoVim

↗ collaborators ⇒ quadratic ↗ remote operations

2

Distributed Collaborative Editors

1 Across space, time, organizations.

2 Two phases :

a locally prepare operations to send
b execute remote operations

3 Operational transform

+ local operations cheap
– remote operations complex

4 Conflict-free Replicated Data Type

2 phases share computational cost

Distributed Collaborative editors

Optimistic replication

CRDT OT

Google Docs CoVim

↗ collaborators ⇒ quadratic ↗ remote operations

2

Distributed Collaborative Editors

1 Across space, time, organizations.

2 Two phases :

a locally prepare operations to send
b execute remote operations

3 Operational transform

+ local operations cheap
– remote operations complex

4 Conflict-free Replicated Data Type

2 phases share computational cost

Distributed Collaborative editors

Optimistic replication

CRDT OT

Google Docs CoVim

↗ collaborators ⇒ quadratic ↗ remote operations

2

Distributed Collaborative Editors

A document can be seen as a sequence od basic elements (characters,
words, lines, etc.). The problem is non trivial because it is necessary that
the edition (updating of the document) ensures the following three
properties (CCI) :

1 Convergence : the different copies need to converge to a same copy

2 Causality : any operation needs to reflect the operations that occurred
causally before it

3 Intention : the effect of an operation needs to meet the intention of
the user that ordered it

3

Distributed Collaborative Editors

A document can be seen as a sequence od basic elements (characters,
words, lines, etc.). The problem is non trivial because it is necessary that
the edition (updating of the document) ensures the following three
properties (CCI) :

1 Convergence : the different copies need to converge to a same copy

2 Causality : any operation needs to reflect the operations that occurred
causally before it

3 Intention : the effect of an operation needs to meet the intention of
the user that ordered it

3

Distributed Collaborative Editors

A document can be seen as a sequence od basic elements (characters,
words, lines, etc.). The problem is non trivial because it is necessary that
the edition (updating of the document) ensures the following three
properties (CCI) :

1 Convergence : the different copies need to converge to a same copy

2 Causality : any operation needs to reflect the operations that occurred
causally before it

3 Intention : the effect of an operation needs to meet the intention of
the user that ordered it

3

CRDTs for sequences

1 Two commutative operations :

Insert / delete
Identify the basic elements
The set of ids is totally
ordered
The ids make the sequence

2 The operations :

insert(p, elem, q)
⇒basic function alloc(p, q)
delete(idelem)
idelem : immutable

3 Deleted elements are only
marked

⇒ eventually needs purge

4 The size of identifiers may grow

linearly wrt # operations
very fast depending on the use
case

CRDTs sequence

Variable-size Ids

Logoot Treedoc

Tombstones

WOOT

WOOTO

WOOTH

CT

RGA

Treedoc

4

CRDTs for sequences

1 Two commutative operations :

Insert / delete
Identify the basic elements
The set of ids is totally
ordered
The ids make the sequence

2 The operations :

insert(p, elem, q)
⇒basic function alloc(p, q)
delete(idelem)
idelem : immutable

3 Deleted elements are only
marked

⇒ eventually needs purge

4 The size of identifiers may grow

linearly wrt # operations
very fast depending on the use
case

CRDTs sequence

Variable-size Ids

Logoot Treedoc

Tombstones

WOOT

WOOTO

WOOTH

CT

RGA

Treedoc

4

CRDTs for sequences

1 Two commutative operations :

Insert / delete
Identify the basic elements
The set of ids is totally
ordered
The ids make the sequence

2 The operations :

insert(p, elem, q)
⇒basic function alloc(p, q)
delete(idelem)
idelem : immutable

3 Deleted elements are only
marked

⇒ eventually needs purge

4 The size of identifiers may grow

linearly wrt # operations
very fast depending on the use
case

CRDTs sequence

Variable-size Ids

Logoot Treedoc

Tombstones

WOOT

WOOTO

WOOTH

CT

RGA

Treedoc

4

CRDTs for sequences

1 Two commutative operations :

Insert / delete
Identify the basic elements
The set of ids is totally
ordered
The ids make the sequence

2 The operations :

insert(p, elem, q)
⇒basic function alloc(p, q)
delete(idelem)
idelem : immutable

3 Deleted elements are only
marked

⇒ eventually needs purge

4 The size of identifiers may grow

linearly wrt # operations
very fast depending on the use
case

CRDTs sequence

Variable-size Ids

Logoot Treedoc

Tombstones

WOOT

WOOTO

WOOTH

CT

RGA

Treedoc

4

Motivations

Spectrum of two Wikipedia documents.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2000 4000 6000 8000 10000 12000

n
˚

re
v
is

io
n

revision

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000 12000

id
 b

it
-s

iz
e

n˚ line

Logoot

(a) Page edited in the end. ⇒ 169.7
bits/id.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180

n
˚

re
v
is

io
n

revision

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180

id
 b

it
-s

iz
e

n˚ line

Logoot

(b) Page edited in front. ⇒ 172.25
bits/id.

⇒ Allocation strategies are CRUCIAL

5

Motivations

Spectrum of two Wikipedia documents.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2000 4000 6000 8000 10000 12000

n
˚

re
v
is

io
n

revision

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000 12000

id
 b

it
-s

iz
e

n˚ line

Logoot

(c) Page edited in the end. ⇒ 169.7
bits/id.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180

n
˚

re
v
is

io
n

revision

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180

id
 b

it
-s

iz
e

n˚ line

Logoot

(d) Page edited in front. ⇒ 172.25
bits/id.

⇒ Allocation strategies are CRUCIAL

5

Abstract Problem (1)

Achour

Yehuda

Maurice

Michel

Eli

6

Abstract Problem (1)

Achour

Yehuda

Maurice

Michel

Eli

000

001

010

011

100

n cards can be named using ids of size O(log n)

7

Abstract Problem (1)

Achour

Yehuda

Maurice

Michel

Eli

100

000

010

001

011

Even if one wants to preserve the order defined by the original names, n
cards can be renamed with ids of size O(log n)

8

Abstract Problem (2)

000

Achour

Yehuda

Maurice

Michel

Eli

How about if the original names are not a priori known ?

9

Abstract Problem (2)

000 ???

Yehuda

Maurice

Michel

Eli Achour

One needs to have spare space (dense set of ids)

10

Abstract Problem (2)

100 000, 001 or 010

Yehuda

Maurice

Michel

Eli Achour

Is it possible to avoid all this loss of space ?

11

Bear confesses. . .

12

Problem

Variable-size identifier

A variable-size identifier id is
a sequence of numbers
id = [p1.p2 . . . pn] which can
designate a path in a tree.

0 99
10 11 14 15

Begin End

13 42 92

a
e f g

b c d

Problem statement

Let D a document on which n insert operations have been performed. Let
I(D) = {id |(, id) ∈ D}. The function alloc(idp, idq) should provide
identifiers such as : ∑

id∈I

|id |2
n < O(n)

|id |2 means log2(id) aka. bit-length
13

Proposal : LSEQ

Three components :

base doubling,

multiple allocation strategies,

random strategy choice.

Intuition

As it is complex to predict the editing behaviour, some depths of the tree
on a given path can be lost if the reward compensates the loss.
In other terms, even if LSEQ chooses the wrong strategy at a given time,
it will eventually choose the good one, and that choice will amortize the
cost of all previous lost depths.

14

Base doubling

Exponential trees :

Under uniform distribution :

Spatial complexity : O(n log log n). Where n the number of Ids.

[p1.p2 . . . pn] ⇒ |pn|2 = |pn−1|2 + 1. Where |p1| = base

+ 1 bit ⇒ x2 identifiers

Intuition

If the number of insert operations is low, the id bit-length can stay small.
On the other hand, when the number of insertions increases, it is
profitable to allocate larger identifiers.

15

Multiple allocation strategies
boundary :

+ Good : page edited in the end.

– Good : page edited in front.

boundary+ boundary-

insertion

+20

0 100

0
11

100

5051

insertion

−20

0 100

0
89

100

5051

Intuition

The allocation strategy boundary is not sufficient to be employed as a
safe allocation strategy. However, by using its antagonist strategy, each
strategy cancels the other’s deficiency.

16

Random strategy choice

Unique strategy : not sufficient

⇒ Strategy choice : When ? Which ?

Intuition : When

The opening of a new space has a major meaning : Either the allocation
strategy went wrong, or, on the opposite, a high number of insertions
saturated the previous depths, meaning that it requires more space.
Therefore, the space opening is an ideal moment to decide which strategy
to employ.

Intuition : Which

Since it is impossible to a priori know the editing behaviour, the strategy
choice should not favorize any behaviour. Consequently, the frequency
of appearence of each strategies must be equal.

17

Synthesis : example

Exponential tree

Two allocation strategies : boundary+ and boundary–

Random strategy choice

StrategyBase

boundary+32

boundary−64

???128

0 319 10 23

Begin End

32 51 60

18

Experimentations

1 Influence of each LSEQ’s component

⇒ Synthetic documents.
⇒ High amount of insertions.
⇒ 3 editing behaviour : in the beginning, in the end, random.

2 Comparison with variable-size CRDT.

⇒ Real documents : Wikipedia.
⇒ 2 editing behaviour : in the beginning, in the end.

19

Boundary

0 1 2 3 4 5 6
0

150

300

450

log10(nbInsert)

id
b

it
-l

en
g

th

End editing
Front editing
Random editing

Simple boundary+ setup with base = 210 and boundary = 10

20

Exponential tree

0 1 2 3 4 5 6
0

150

300

450

log10(nbInsert)

id
b

it
-l

en
g

th

End editing
Front editing
Random editing

Base doubling setup with base = 24+id.size and boundary = 10

21

Strategy choice

0 1 2 3 4 5 6
0

150

300

450

log10(nbInsert)

id
b

it
-l

en
g

th

End editing
Front editing
Random editing

Round-Robin (RR) alternation of strategies boundary+ and boundary–
(base = 210 ; boundary = 10)

22

LSEQ

0 1 2 3 4 5 6
0

150

300

450

log10(nbInsert)

id
b

it
-l

en
g

th
End editing
Front editing
Random editing

LSEQ randomly alternating boundary+ and boundary– and using the base
doubling (base = 24+id.size ; boundary = 10)

23

Comparison with Logoot I

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2000 4000 6000 8000 10000 12000

n
˚

re
v
is

io
n

revision

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000 12000

id
 b

it
-s

iz
e

n˚ line

Logoot
LSEQ

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180

n
˚

re
v
is

io
n

revision

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180
id

 b
it
-s

iz
e

n˚ line

Logoot
LSEQ

24

Comparison with Logoot II

L LSEQ

id-length
avg 2.65 6.25
max 4 12

id-bit-length
avg 169.7 61.24
max 256 150

Numerical values of a page edited in the end.

L LSEQ

id-length
avg 2.69 5.29
max 5 8

id-bit-length
avg 172.25 51.99
max 320 84

Numerical values on front edited page.

25

Synthesis : experiments

1 Each component contributes to LSEQ :

Exponential tree : sub-linear behaviour
Multiple strategies + choice : generic

2 Better than Logoot :

On documents edited in the end
On documents edited in the beginning

26

Conclusion and Future Works

Proof : sub-linear space complexity.

n operations : uniform distribution ⇒ O(log n)
n operations : monotononic ⇒ O((log n)2)
n operations : worst-case ⇒ O(n2) ? ? ?

Proof : worst-case happens with a negligible probability

Concurrency effect

27

