

Fast Byzantine Agreement

Nicolas Braud-Santoni Rachid Guerraoui Florian Huc

MMTDC'13, Bremen

Failure model

Byzantine fault

- Arbitrary behaviour
- Full information

Failure model

Byzantine fault

- Arbitrary behaviour
- Full information

Non-adaptive adversary

Failure model

Byzantine fault

- Arbitrary behaviour
- Full information

- Non-adaptive adversary
- Rushing adversary

Nicolas Braud-Santoni Introduction 2/18

Failure model

Byzantine fault

- Arbitrary behaviour
- Full information

- Non-adaptive adversary
- Rushing adversary
- No "cryptographic" hypotheses

Consensus

Consensus

- Propose values
- Agreement
- Validity
- Termination

Nicolas Braud-Santoni Introduction 3/18

Consensus

Consensus

- Propose values
- Agreement
- Validity
- Termination

- FLP
- Lower bounds

Nicolas Braud-Santoni Introduction 3/18

Consensus

Consensus

- Propose values
- Agreement
- Validity
- Termination

Randomised Agreement

- Random values
- Agreement
- Non-biased
- Termination

- FLP
- Lower bounds

Nicolas Braud-Santoni Introduction 4/18

Contribution

nc
lylog
lylog
+1

Nicolas Braud-Santoni Introduction 4/18

Contribution

Randomised agreement					
	[BPV06]	[KS09]	BA	[PR10]	[KS13]
Model	Sync	Sync	Sync	Async+PC	Async
Time		Polylog	Polylog	n^3	$\tilde{O}\left(n^{2.5}\right)$
Bits	$n^{O(\log n)}$	$\tilde{O}\left(\sqrt{n}\right)$		$\Omega\left(n^2\log n\right)$?
n	4 <i>t</i> + 1	3t + 1	3t + 1	4t + 1	500t

- Introduction
- Almost-everywhere Agreement
- 3 A Fast Consensus Algorithm
 Push-pull protocols
 Push phase
 Pull phase
- Samplers
- Conclusion

Randomised Agreement

- Random values
- Agreement
- Non-biased
- Termination

Randomised Agreement

- Random values
- Agreement
- Non-biased
- Termination

Almost-everywhere Agreement

- Random values
- Agreement over most nodes
- Non-biased
- Termination

Randomised Agreement

- Random values
- Agreement
- Non-biased
- Termination

Almost-everywhere Agreement

- Random values
- Agreement over most nodes
- Non-biased
- Termination

State of the art

• [Kin+06]: Synchronous almost-everywhere agreement Poly-log in time and communication

State of the art

- [Kin+06]: Synchronous almost-everywhere agreement Poly-log in time and communication
- [KS09]: Synchronous almost-everywhere reduction Poly-log in time, but $O\left(\sqrt{n}\right)$ messages

Contribution

Contribution

- Introduction
- Almost-everywhere Agreement
- 3 A Fast Consensus Algorithm
 Push-pull protocols
 Push phase
 Pull phase
- Samplers
- Conclusion

Push-pull protocols

Push-pull protocols

Push

Each process:

- spreads its candidate value;
- builds a candidate set from received proposals.

Push-pull protocols

Push

Each process:

- spreads its candidate value;
- 2 builds a candidate set from received proposals.

Pull

Validate values from the candidate set.

Phase 1: Push to node x

$$L_X = \{s_X; \}$$

Phase 1: Push to node x

Push O(n) strings

Phase 2: Pull request from node x for value s

Phase 2: Pull request from node x for value s

Phase 2: Pull request from node x for value s

Phase 2: Pull request from node x for value s

Phase 2: Pull request from node x for value s

Phase 2: Pull request from node x for value s

Phase 2: Pull request from node x for value s

Phase 2: Pull request from node x for value s

- Introduction
- Almost-everywhere Agreement
- 3 A Fast Consensus Algorithm
 Push-pull protocols
 Push phase
 Pull phase
- Samplers
- Conclusion

How explicit can you be?

• Seems simple

How explicit can you be?

- Seems simple
- Constructive?

How explicit can you be?

- Seems simple
- Constructive?

NO!

Why not?

"Magic" selection function

• $\mathbb{S}: X \to 2^{\gamma}$ is a (Θ, δ) sampler if for $S \subseteq Y$, fraction δ of inputs have

$$\frac{\left|\mathbb{S}(x)\cap S\right|}{\left|S\right|}>\frac{\left|S\right|}{\left|\gamma\right|}+\Theta$$

Nicolas Braud-Santoni Samplers 14/18

Why not?

"Magic" selection function

• $\mathbb{S}: X \to 2^Y$ is a (Θ, δ) sampler if for $S \subseteq Y$, fraction δ of inputs have

$$\frac{\left|\,\mathbb{S}(x)\cap S\,\right|}{\left|\,S\,\right|}>\frac{\left|\,S\,\right|}{\left|\,Y\,\right|}+\Theta$$

Additional properties: overloading, edge expansion

Why not?

"Magic" selection function

• $\mathbb{S}: X \to 2^Y$ is a (Θ, δ) sampler if for $S \subseteq Y$, fraction δ of inputs have

$$\frac{\left|\,\mathbb{S}(x)\cap S\,\right|}{\left|\,S\,\right|}>\frac{\left|\,S\,\right|}{\left|\,Y\,\right|}+\Theta$$

Additional properties: overloading, edge expansion

Proof techniques

Composable properties

Nicolas Braud-Santoni Samplers 14/18

Why not?

"Magic" selection function

• $\mathbb{S}: X \to 2^Y$ is a (Θ, δ) sampler if for $S \subseteq Y$, fraction δ of inputs have

$$\frac{\left|\,\mathbb{S}(x)\cap S\,\right|}{\left|\,S\,\right|}>\frac{\left|\,S\,\right|}{\left|\,Y\,\right|}+\Theta$$

Additional properties: overloading, edge expansion

Proof techniques

- Composable properties
- If $\mathbb{P}[P(x)] > 0$, such an x exists

Why not?

"Magic" selection function

• $\mathbb{S}: X \to 2^Y$ is a (Θ, δ) sampler if for $S \subseteq Y$, fraction δ of inputs have

$$\frac{\left|\,\mathbb{S}(x)\cap S\,\right|}{\left|\,S\,\right|}>\frac{\left|\,S\,\right|}{\left|\,Y\,\right|}+\Theta$$

Additional properties: overloading, edge expansion

Proof techniques

- Composable properties
- If $\mathbb{P} [P(x)] > 0$, such an x exists
- If $\mathbb{P}\left[P(x)\right] + \mathbb{P}\left[Q(x)\right] > 1$ then $\mathbb{P}\left[P(x) \land Q(x)\right] > 0$

- Introduction
- Almost-everywhere Agreement
- 3 A Fast Consensus Algorithm
 Push-pull protocols
 Push phase
 Pull phase
- Samplers
- Conclusion

Nicolas Braud-Santoni Conclusion 16/18

Recap

Almost-everywhere Reduction						
	[KS09] SNR	AER	AER			
Model		SR	Async			
Time	$O\left(\log^2 n\right)$	0 (1)	$O\left(\frac{\log n}{\log\log n}\right)$ $O\left(\log^3 n\right)$			
Bits	$\tilde{O}\left(\sqrt{n}\right)$	$O\left(\log^3 n\right)$	$O\left(\log^3 n\right)$			

Nicolas Braud-Santoni Conclusion 16/18

Recap

Randomised agreement = A.e. agreement + reduction								
	[BPV06]	[KS09]	BA	[PR10]	[KS13]			
	Sync	Sync		Async+PC	Async			
	$O(\log n)$	Polylog	Polylog	n^3	$\tilde{O}\left(n^{2.5}\right)$			
Bits	$n^{O(\log n)}$	$\tilde{O}\left(\sqrt{n}\right)$	Polylog	$\Omega(n^2 \log n)$?			
n	4t + 1	3t + 1	3t + 1	4t + 1	500 <i>t</i>			

Nicolas Braud-Santoni Conclusion 17/18

Conclusion

Result

- A new, highly efficient algorithm
- yields a poly-log Byzantine Agreement protocol.

Nicolas Braud-Santoni Conclusion 17/18

Conclusion

Result

- A new, highly efficient algorithm
- yields a poly-log Byzantine Agreement protocol.

Almost-everywhere agreement

- High (relative) complexity
- Synchronous

Nicolas Braud-Santoni Conclusion 18/18

Perspectives

Future work

- Faster, asynchronous almost-everywhere agreement
- Load balancing?

Nicolas Braud-Santoni Conclusion 18/18

Perspectives

Future work

- Faster, asynchronous almost-everywhere agreement
- Load balancing?
- Power of adaptive adversary
- Models for randomization?

Nicolas Braud-Santoni Conclusion 18/18

Perspectives

Future work

- Faster, asynchronous almost-everywhere agreement
- Load balancing?
- Power of adaptive adversary
- Models for randomization?

Thank you for your attention!